Skip to content
This repository was archived by the owner on Oct 13, 2021. It is now read-only.
This repository was archived by the owner on Oct 13, 2021. It is now read-only.

Can't convert keras.AdditiveAttention Layer #733

@edmBernard

Description

@edmBernard

I try to convert a model using the additive attention layer from keras https://keras.io/api/layers/attention_layers/additive_attention/

I got the following error :

WARN: No corresponding ONNX op matches the tf.op node additive_attention/cond of type If
      The generated ONNX model needs run with the custom op supports.
WARN: No corresponding ONNX op matches the tf.op node keras_learning_phase of type PlaceholderWithDefault
      The generated ONNX model needs run with the custom op supports.
WARN: No corresponding ONNX op matches the tf.op node additive_attention/ReadVariableOp/resource of type Placeholder
      The generated ONNX model needs run with the custom op supports.
Traceback (most recent call last):
  File ".\script_attention.py", line 38, in <module>
    onnx_model = keras2onnx.convert_keras(model, model.name)
  File "D:\test\venv\lib\site-packages\keras2onnx\main.py", line 99, in convert_keras
    parse_graph(topology, tf_graph, target_opset, output_names, output_dict)
  File "D:\test\venv\lib\site-packages\keras2onnx\parser.py", line 907, in parse_graph
    ) if is_tf2 and is_tf_keras else _parse_graph_core(
  File "D:\test\venv\lib\site-packages\keras2onnx\parser.py", line 784, in _parse_graph_core_v2
    _on_parsing_tf_nodes(graph, layer_info.nodelist, varset, topology.debug_mode)
  File "D:\test\venv\lib\site-packages\keras2onnx\parser.py", line 328, in _on_parsing_tf_nodes
    var_type = infer_variable_type(i_, varset.target_opset)
  File "D:\test\venv\lib\site-packages\keras2onnx\_parser_tf.py", line 44, in infer_variable_type
    "Unable to find out a correct type for tensor type = {} of {}".format(tensor_type, tensor.name))
ValueError: Unable to find out a correct type for tensor type = 20 of additive_attention/ReadVariableOp/resource:0

I use this script to reproduce the issue :

def sa_ak_network(x):
    f = keras.layers.Conv2D(filters=x.shape[-1], kernel_size=1, strides=1)(x)
    g = keras.layers.Conv2D(filters=x.shape[-1], kernel_size=1, strides=1)(x)
    o = tf.keras.layers.AdditiveAttention()([f, g])
    o = keras.layers.Reshape(x.shape[1:])(o)
    gamma_o = keras.layers.Conv2D(filters=x.shape[-1], kernel_size=1, strides=1, use_bias=False)(o)
    return gamma_o + x

input_tmp = keras.Input(shape=(64, 64, 32), dtype=tf.float32)
output = sa_ak_network(input_tmp)

model = keras.Model(inputs=input_tmp, outputs=output)
model_json = json.loads(model.to_json())
with open("additive_keras.json", "w") as f:
    json.dump(model_json, f, indent=2)

res = model(np.ones((1, 64, 64, 32)))

onnx_model = keras2onnx.convert_keras(model, model.name)
keras2onnx.save_model(onnx_model, "additive_keras.onnx")

I tested it with various version of tensorflow + keras2onnx I got the same error.
tensorflow 2.2 2.3 2.5
keras2onnx 1.6.5 1.7 and master

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions