-
Couldn't load subscription status.
- Fork 457
Closed
Description
Hi,
I am trying to convert a frozen graph to ONNX using tf2onnx programmatically and i run into some warnings. (same as the ones mentioned in 745). I am using the 1.5.6 version of tf2onnx which has the changes merged already.
log:
Cannot infer shape for conv1_1/conv1_1/bn/FusedBatchNormV3: conv1_1/conv1_1/bn/FusedBatchNormV3:5
Cannot infer shape for conv1_2/conv1_2/bn/FusedBatchNormV3: conv1_2/conv1_2/bn/FusedBatchNormV3:5
Cannot infer shape for conv2_1/1/conv2_1/1/bn/FusedBatchNormV3: conv2_1/1/conv2_1/1/bn/FusedBatchNormV3:5
Cannot infer shape for conv2_3/bn/FusedBatchNormV3: conv2_3/bn/FusedBatchNormV3:5
Cannot infer shape for conv2_3/1/conv2_3/1/bn/FusedBatchNormV3: conv2_3/1/conv2_3/1/bn/FusedBatchNormV3:5
Cannot infer shape for conv3_1/bn/FusedBatchNormV3: conv3_1/bn/FusedBatchNormV3:5
Cannot infer shape for conv3_1/1/conv3_1/1/bn/FusedBatchNormV3: conv3_1/1/conv3_1/1/bn/FusedBatchNormV3:5
Cannot infer shape for conv3_3/bn/FusedBatchNormV3: conv3_3/bn/FusedBatchNormV3:5
Cannot infer shape for conv3_3/1/conv3_3/1/bn/FusedBatchNormV3: conv3_3/1/conv3_3/1/bn/FusedBatchNormV3:5
Cannot infer shape for conv4_1/bn/FusedBatchNormV3: conv4_1/bn/FusedBatchNormV3:5
Cannot infer shape for conv4_1/1/conv4_1/1/bn/FusedBatchNormV3: conv4_1/1/conv4_1/1/bn/FusedBatchNormV3:5
Cannot infer shape for conv4_3/bn/FusedBatchNormV3: conv4_3/bn/FusedBatchNormV3:5
Cannot infer shape for conv4_3/1/conv4_3/1/bn/FusedBatchNormV3: conv4_3/1/conv4_3/1/bn/FusedBatchNormV3:5
Cannot infer shape for fc1/fc1/bn/FusedBatchNormV3: fc1/fc1/bn/FusedBatchNormV3:5
System config:
tf2onnx : 1.5.6
onnx: 1.7.0
TF 1.15
hardware : Jetson Tx2 - Linux aarch64
pb file link:
https://drive.google.com/file/d/12IMU7wLmsnDwynIuyUtbmhoRTeTyyFqS/view?usp=sharing
Minimal Code:
import os
import sys
import tensorflow as tf
import tf2onnx
import onnx
path = "models/mars.pb"
output_name = ['features']
dims = [3, 128, 64]
# Function to load frozen graph
def load_frozen_pb(path_to_pb):
with tf.io.gfile.GFile(path_to_pb, "rb") as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as g:
tf.import_graph_def(graph_def, name='')
return g
g = load_frozen_pb(path)
sess = tf.compat.v1.Session(graph=g)
onnx_graph = tf2onnx.tfonnx.process_tf_graph(sess.graph, input_names=["images:0"], output_names=["features:0"], opset=11)
model_proto = onnx_graph.make_model("test")
with open("model.onnx", "wb") as f:
f.write(model_proto.SerializeToString())
model1 = onnx.load('model.onnx')
onnx.checker.check_model(model1)
Metadata
Metadata
Assignees
Labels
No labels