Skip to content

Commit 052467d

Browse files
committed
results 10
1 parent 3e9e933 commit 052467d

File tree

1 file changed

+6
-99
lines changed

1 file changed

+6
-99
lines changed

Python Scripts/query_data.py

Lines changed: 6 additions & 99 deletions
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@
6161
# Save params
6262
save_drift = False,
6363
save_spectra = False,
64-
save_b_shear = True,
64+
save_b_shear = False,
6565
save_results = save_csvs,
6666
# Plot params
6767
show_plots = show_plots,
@@ -85,49 +85,7 @@
8585
# --------------------------------------- DRIFT ----------------------------------------
8686
# Compute Drift Results
8787
if all(isinstance(value, pd.DataFrame) for value in drifts_df_dict.values()):
88-
sim_type_lst = [key.split('_')[0] for key in drifts_df_dict.keys()]
89-
nsubs_lst = [key.split('_')[1] for key in drifts_df_dict.keys()]
90-
iteration_lst = [key.split('_')[4] for key in drifts_df_dict.keys()]
91-
station_lst = [key.split('_')[5] for key in drifts_df_dict.keys()]
92-
93-
drift_df = pd.DataFrame({
94-
'Sim_Type' : sim_type_lst,
95-
'Nsubs' : nsubs_lst,
96-
'Iteration' : iteration_lst,
97-
'Station' : station_lst})
98-
99-
dfx = pd.DataFrame([df['CM x'] for df in drifts_df_dict.values()])
100-
dfy = pd.DataFrame([df['CM y'] for df in drifts_df_dict.values()])
101-
dfy = dfy.reset_index()
102-
dfx = dfx.reset_index()
103-
dfy = dfy.iloc[:,1:]
104-
dfx = dfx.iloc[:,1:]
105-
drift_df_x = pd.concat([drift_df, dfx], axis=1)
106-
drift_df_y = pd.concat([drift_df, dfy], axis=1)
107-
rename_dict = {
108-
1 : 's1',
109-
2 : 's2',
110-
3 : 's3',
111-
4 : 's4',
112-
5 : 's5',
113-
6 : 's6',
114-
7 : 's7',
115-
8 : 's8',
116-
9 : 's9',
117-
10 : 's10',
118-
11 : 's11',
119-
12 : 's12',
120-
13 : 's13',
121-
14 : 's14',
122-
15 : 's15',
123-
16 : 's16',
124-
17 : 's17',
125-
18 : 's18',
126-
19 : 's19',
127-
20 : 's20',
128-
}
129-
drift_df_x = drift_df_x.rename(columns=rename_dict).copy()[['Sim_Type', 'Nsubs', 'Iteration', 'Station', 's1','s5','s10','s15','s20']]
130-
drift_df_y = drift_df_y.rename(columns=rename_dict).copy()[['Sim_Type', 'Nsubs', 'Iteration', 'Station', 's1','s5','s10','s15','s20']]
88+
drift_df_x, drift_df_y = getDriftResultsDF(drifts_df_dict)
13189
else:
13290
drift_df_x = pd.read_csv(project_path / 'drift_per_story_X_df.csv', index_col=0)
13391
drift_df_y = pd.read_csv(project_path / 'drift_per_story_Y_df.csv', index_col=0)
@@ -136,43 +94,7 @@
13694
# --------------------------------------- SPECTRUM ----------------------------------------
13795
# We will have the acceleration at the period equal to mode 3 = 0.83s
13896
if all(isinstance(value, pd.DataFrame) for value in spectra_df_dict.values()):
139-
sim_type_lst = [key.split('_')[0] for key in spectra_df_dict.keys()]
140-
nsubs_lst = [key.split('_')[1] for key in spectra_df_dict.keys()]
141-
iteration_lst = [key.split('_')[4] for key in spectra_df_dict.keys()]
142-
station_lst = [key.split('_')[5] for key in spectra_df_dict.keys()]
143-
spectra_df = pd.DataFrame({
144-
'Sim_Type' : sim_type_lst,
145-
'Nsubs' : nsubs_lst,
146-
'Iteration' : iteration_lst,
147-
'Station' : station_lst,})
148-
spectra_df['Zone'] = spectra_df['Station'].apply(assignZonesToStationsInDF)
149-
columns_x = ['Story 1 x', 'Story 5 x', 'Story 10 x', 'Story 15 x', 'Story 20 x']
150-
columns_y = ['Story 1 y', 'Story 5 y', 'Story 10 y', 'Story 15 y', 'Story 20 y']
151-
152-
dfx = pd.DataFrame([df[columns_x].iloc[416] for df in spectra_df_dict.values()])
153-
dfy = pd.DataFrame([df[columns_y].iloc[416] for df in spectra_df_dict.values()])
154-
dfy = dfy.reset_index()
155-
dfx = dfx.reset_index()
156-
dfy = dfy.iloc[:,1:]
157-
dfx = dfx.iloc[:,1:]
158-
spectra_df_x = pd.concat([spectra_df, dfx], axis=1)
159-
spectra_df_y = pd.concat([spectra_df, dfy], axis=1)
160-
rename_dict = {
161-
'Story 1 x' : 's1',
162-
'Story 5 x' : 's5',
163-
'Story 10 x' : 's10',
164-
'Story 15 x' : 's15',
165-
'Story 20 x' : 's20',
166-
}
167-
spectra_df_x = spectra_df_x.rename(columns=rename_dict)
168-
rename_dict = {
169-
'Story 1 y' : 's1',
170-
'Story 5 y' : 's5',
171-
'Story 10 y' : 's10',
172-
'Story 15 y' : 's15',
173-
'Story 20 y' : 's20',
174-
}
175-
spectra_df_y = spectra_df_y.rename(columns=rename_dict)
97+
spectra_df_x, spectra_df_y = getSpectraResultsDF(spectra_df_dict)
17698

17799
else:
178100
spectra_df_x = pd.read_csv(project_path / 'spectra_per_story_X_df.csv', index_col=0)
@@ -181,25 +103,10 @@
181103
#%% Compute Base Shear Results
182104
# --------------------------------------- BASE SHEAR ----------------------------------------
183105
if all(isinstance(value, pd.DataFrame) for value in base_shear_df_dict.values()):
184-
sim_type_lst = [key.split('_')[0] for key in base_shear_df_dict.keys()]
185-
nsubs_lst = [key.split('_')[1] for key in base_shear_df_dict.keys()]
186-
iteration_lst = [key.split('_')[4] for key in base_shear_df_dict.keys()]
187-
station_lst = [key.split('_')[5] for key in base_shear_df_dict.keys()]
188-
base_shear_df = pd.DataFrame({
189-
'Sim_Type' : sim_type_lst,
190-
'Nsubs' : nsubs_lst,
191-
'Iteration' : iteration_lst,
192-
'Station' : station_lst,})
193-
dfx = pd.DataFrame([df['Shear X'].abs().max() for df in base_shear_df_dict.values()], columns=['MaxShearX'])
194-
dfy = pd.DataFrame([df['Shear Y'].abs().max() for df in base_shear_df_dict.values()], columns=['MaxShearY'])
195-
dfy = dfy.reset_index()
196-
dfx = dfx.reset_index()
197-
dfy = dfy.iloc[:,1:]
198-
dfx = dfx.iloc[:,1:]
199-
base_shear_df_x = pd.concat([base_shear_df, dfx], axis=1)
200-
base_shear_df_y = pd.concat([base_shear_df, dfy], axis=1)
106+
base_shear_df_x, base_shear_df_y = getSBaseResultsDF(base_shear_df_dict)
201107
else:
202108
base_shear_df_x = pd.read_csv(project_path / 'max_base_shear_X_df.csv', index_col=0)
203109
base_shear_df_y = pd.read_csv(project_path / 'max_base_shear_Y_df.csv', index_col=0)
204110

205-
# %%
111+
# %% ========================================== ANOVA ==========================================
112+

0 commit comments

Comments
 (0)