Skip to content

setr_naive_512x512_160k_b16_ade20k.py for binary segmentation occring Miou = 0 #2369

@rouchoo

Description

@rouchoo

Hi, when i use setr_naive_512x512_160k_b16_ade20k.py for my binary segmentation task, i found Miou = 0 and Acc = 0 at the Iter(val) [1000]. (The first Iter(val) [100] can yield Miou = 23.3 and Acc = 60.7) I don't know why. Please help me. Thanks!

  1. Here is my /home/rouch/Projects/pythonProject/mmsegmentation/configs/setr/setr_naive_512x512_160k_b16_ade20k.py:
    base = [
    '../base/models/setr_naive.py', '../base/datasets/leaf.py',
    '../base/default_runtime.py', '../base/schedules/schedule_160k.py'
    ]
    norm_cfg = dict(type='BN', requires_grad=True)
    model = dict(
    pretrained=None,
    backbone=dict(
    img_size=(512, 512),
    drop_rate=0.,
    init_cfg=dict(
    type='Pretrained', checkpoint='/home/rouch/Projects/pythonProject/mmsegmentation/pretrain/vit_large_p16.pth')),
    decode_head=dict(num_classes=2),
    auxiliary_head=[
    dict(
    type='SETRUPHead',
    in_channels=1024,
    channels=256,
    in_index=0,
    num_classes=2,
    out_channels=2,
    dropout_ratio=0,
    norm_cfg=norm_cfg,
    act_cfg=dict(type='ReLU'),
    num_convs=2,
    kernel_size=1,
    align_corners=False,
    loss_decode=dict(
    type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    dict(
    type='SETRUPHead',
    in_channels=1024,
    channels=256,
    in_index=1,
    num_classes=2,
    out_channels=2,
    dropout_ratio=0,
    norm_cfg=norm_cfg,
    act_cfg=dict(type='ReLU'),
    num_convs=2,
    kernel_size=1,
    align_corners=False,
    loss_decode=dict(
    type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    dict(
    type='SETRUPHead',
    in_channels=1024,
    channels=256,
    in_index=2,
    num_classes=2,
    out_channels = 2,
    dropout_ratio=0,
    norm_cfg=norm_cfg,
    act_cfg=dict(type='ReLU'),
    num_convs=2,
    kernel_size=1,
    align_corners=False,
    loss_decode=dict(
    type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4))
    ],
    test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)),
    )

optimizer = dict(
lr=0.01,
weight_decay=0.0,
paramwise_cfg=dict(custom_keys={'head': dict(lr_mult=10.)}))

num_gpus: 8 -> batch_size: 16

data = dict(samples_per_gpu=2)

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions