-
Notifications
You must be signed in to change notification settings - Fork 2.8k
Closed
Labels
Description
Hi, when i use setr_naive_512x512_160k_b16_ade20k.py for my binary segmentation task, i found Miou = 0 and Acc = 0 at the Iter(val) [1000]. (The first Iter(val) [100] can yield Miou = 23.3 and Acc = 60.7) I don't know why. Please help me. Thanks!
- Here is my /home/rouch/Projects/pythonProject/mmsegmentation/configs/setr/setr_naive_512x512_160k_b16_ade20k.py:
base = [
'../base/models/setr_naive.py', '../base/datasets/leaf.py',
'../base/default_runtime.py', '../base/schedules/schedule_160k.py'
]
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
pretrained=None,
backbone=dict(
img_size=(512, 512),
drop_rate=0.,
init_cfg=dict(
type='Pretrained', checkpoint='/home/rouch/Projects/pythonProject/mmsegmentation/pretrain/vit_large_p16.pth')),
decode_head=dict(num_classes=2),
auxiliary_head=[
dict(
type='SETRUPHead',
in_channels=1024,
channels=256,
in_index=0,
num_classes=2,
out_channels=2,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=2,
kernel_size=1,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='SETRUPHead',
in_channels=1024,
channels=256,
in_index=1,
num_classes=2,
out_channels=2,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=2,
kernel_size=1,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='SETRUPHead',
in_channels=1024,
channels=256,
in_index=2,
num_classes=2,
out_channels = 2,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=2,
kernel_size=1,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4))
],
test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)),
)
optimizer = dict(
lr=0.01,
weight_decay=0.0,
paramwise_cfg=dict(custom_keys={'head': dict(lr_mult=10.)}))
num_gpus: 8 -> batch_size: 16
data = dict(samples_per_gpu=2)