Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion mmseg/engine/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,10 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .hooks import SegVisualizationHook
from .optimizers import (LayerDecayOptimizerConstructor,
LearningRateDecayOptimizerConstructor)
from .visualization import SegLocalVisualizer

__all__ = [
'LearningRateDecayOptimizerConstructor', 'LayerDecayOptimizerConstructor'
'LearningRateDecayOptimizerConstructor', 'LayerDecayOptimizerConstructor',
'SegVisualizationHook', 'SegLocalVisualizer'
]
4 changes: 4 additions & 0 deletions mmseg/engine/hooks/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .visualization_hook import SegVisualizationHook

__all__ = ['SegVisualizationHook']
101 changes: 101 additions & 0 deletions mmseg/engine/hooks/visualization_hook.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
from typing import Sequence

import mmcv
from mmengine.hooks import Hook
from mmengine.runner import Runner

from mmseg.data import SegDataSample
from mmseg.engine.visualization import SegLocalVisualizer
from mmseg.registry import HOOKS


@HOOKS.register_module()
class SegVisualizationHook(Hook):
"""Segmentation Visualization Hook. Used to visualize validation and
testing process prediction results.

In the testing phase:

1. If ``show`` is True, it means that only the prediction results are
visualized without storing data, so ``vis_backends`` needs to
be excluded.

Args:
draw (bool): whether to draw prediction results. If it is False,
it means that no drawing will be done. Defaults to False.
interval (int): The interval of visualization. Defaults to 50.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
"""

def __init__(self,
draw: bool = False,
interval: int = 50,
show: bool = False,
wait_time: float = 0.,
file_client_args: dict = dict(backend='disk')):
self._visualizer: SegLocalVisualizer = \
SegLocalVisualizer.get_current_instance()
self.interval = interval
self.show = show
if self.show:
# No need to think about vis backends.
self._visualizer._vis_backends = {}
warnings.warn('The show is True, it means that only '
'the prediction results are visualized '
'without storing data, so vis_backends '
'needs to be excluded.')

self.wait_time = wait_time
self.file_client_args = file_client_args.copy()
self.file_client = None
self.draw = draw
if not self.draw:
warnings.warn('The draw is False, it means that the '
'hook for visualization will not take '
'effect. The results will NOT be '
'visualized or stored.')

def after_iter(self,
runner: Runner,
batch_idx: int,
data_batch: Sequence[dict],
outputs: Sequence[SegDataSample],
mode: str = 'val') -> None:
"""Run after every ``self.interval`` validation iterations.

Args:
runner (:obj:`Runner`): The runner of the validation process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (Sequence[dict]): Data from dataloader.
outputs (Sequence[:obj:`SegDataSample`]): Outputs from model.
mode (str): mode (str): Current mode of runner. Defaults to 'val'.
"""
if self.draw is False or mode == 'train':
return

if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)

if self.every_n_inner_iters(batch_idx, self.interval):
for input_data, output in zip(data_batch, outputs):
img_path = input_data['data_sample'].img_path
img_bytes = self.file_client.get(img_path)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
window_name = f'{mode}_{osp.basename(img_path)}'

gt_sample = input_data['data_sample']
self._visualizer.add_datasample(
window_name,
img,
gt_sample=gt_sample,
pred_sample=output,
show=self.show,
wait_time=self.wait_time,
step=runner.iter)
4 changes: 4 additions & 0 deletions mmseg/engine/visualization/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .local_visualizer import SegLocalVisualizer

__all__ = ['SegLocalVisualizer']
172 changes: 172 additions & 0 deletions mmseg/engine/visualization/local_visualizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple

import numpy as np
from mmengine import Visualizer
from mmengine.data import PixelData
from mmengine.dist import master_only

from mmseg.data import SegDataSample
from mmseg.registry import VISUALIZERS


@VISUALIZERS.register_module()
class SegLocalVisualizer(Visualizer):
"""MMSegmentation Local Visualizer.

Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
alpha (int, float): The transparency of segmentation mask.
Defaults to 0.8.

Examples:
>>> import numpy as np
>>> import torch
>>> from mmengine.data import PixelData
>>> from mmseg.data import SegDataSample
>>> from mmseg.engine.visualization import SegLocalVisualizer

>>> seg_local_visualizer = SegLocalVisualizer()
>>> image = np.random.randint(0, 256,
... size=(10, 12, 3)).astype('uint8')
>>> gt_sem_seg_data = dict(data=torch.randint(0, 2, (1, 10, 12)))
>>> gt_sem_seg = PixelData(**gt_sem_seg_data)
>>> gt_seg_data_sample = SegDataSample()
>>> gt_seg_data_sample.gt_sem_seg = gt_sem_seg
>>> seg_local_visualizer.dataset_meta = dict(
>>> classes=('background', 'foreground'),
>>> palette=[[120, 120, 120], [6, 230, 230]])
>>> seg_local_visualizer.add_datasample('visualizer_example',
... image, gt_seg_data_sample)
>>> seg_local_visualizer.add_datasample(
... 'visualizer_example', image,
... gt_seg_data_sample, show=True)
"""

def __init__(self,
name: str = 'visualizer',
image: Optional[np.ndarray] = None,
vis_backends: Optional[Dict] = None,
save_dir: Optional[str] = None,
alpha: float = 0.8,
**kwargs):
super().__init__(name, image, vis_backends, save_dir, **kwargs)
self.alpha = alpha
# Set default value. When calling
# `SegLocalVisualizer().dataset_meta=xxx`,
# it will override the default value.
self.dataset_meta = {}

def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
classes: Optional[Tuple[str]],
palette: Optional[List[List[int]]]) -> np.ndarray:
"""Draw semantic seg of GT or prediction.

Args:
image (np.ndarray): The image to draw.
sem_seg (:obj:`PixelData`): Data structure for
pixel-level annotations or predictions.
classes (Tuple[str], optional): Category information.
palette (List[List[int]], optional): The palette of
segmentation map.

Returns:
np.ndarray: the drawn image which channel is RGB.
"""
num_classes = len(classes)

sem_seg = sem_seg.data
ids = np.unique(sem_seg)[::-1]
legal_indices = ids < num_classes
ids = ids[legal_indices]
labels = np.array(ids, dtype=np.int64)

colors = [palette[label] for label in labels]

self.set_image(image)

# draw semantic masks
for label, color in zip(labels, colors):
self.draw_binary_masks(
sem_seg == label, colors=[color], alphas=self.alpha)

return self.get_image()

@master_only
def add_datasample(self,
name: str,
image: np.ndarray,
gt_sample: Optional[SegDataSample] = None,
pred_sample: Optional[SegDataSample] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: float = 0,
step: int = 0) -> None:
"""Draw datasample and save to all backends.

- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.

Args:
name (str): The image identifier.
image (np.ndarray): The image to draw.
gt_sample (:obj:`SegDataSample`, optional): GT SegDataSample.
Defaults to None.
pred_sample (:obj:`SegDataSample`, optional): Prediction
SegDataSample. Defaults to None.
draw_gt (bool): Whether to draw GT SegDataSample. Default to True.
draw_pred (bool): Whether to draw Prediction SegDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
step (int): Global step value to record. Defaults to 0.
"""
classes = self.dataset_meta.get('classes', None)
palette = self.dataset_meta.get('palette', None)

gt_img_data = None
pred_img_data = None

if draw_gt and gt_sample is not None:
gt_img_data = image
if 'gt_sem_seg' in gt_sample:
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing semantic ' \
'segmentation results.'
gt_img_data = self._draw_sem_seg(gt_img_data,
gt_sample.gt_sem_seg, classes,
palette)

if draw_pred and pred_sample is not None:
pred_img_data = image
if 'pred_sem_seg' in pred_sample:
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing semantic ' \
'segmentation results.'
pred_img_data = self._draw_sem_seg(pred_img_data,
pred_sample.pred_sem_seg,
classes, palette)

if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
else:
drawn_img = pred_img_data

if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
else:
self.add_image(name, drawn_img, step)
Loading