Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 37 additions & 0 deletions sample-quickstart-template/intro/intro.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# Introduction

## About this LiveLabs QuickStart


(placeholder for 30 second hook)
[](youtube:REPLACE_WITH_VIDEO_ID)


Messy data buries meaning. Keywords miss the mark. Customers, employees, and analysts waste time chasing the right document, product, or answer.

AI Vector Search in Oracle Database 23ai fixes that. It stores embeddings—the numeric “fingerprints” of meaning—inside the database. With them, you find what things mean, not just what words they contain. That makes Vector Search a foundation for Retrieval-Augmented Generation (RAG) and agentic workflows, where LLMs need fast, accurate access to trusted enterprise data.

What you gain with Vector Search in Oracle Database 23ai:

- **Semantic search:** Discover documents, products, and images by meaning, not spelling.

- **One platform:** Blend vectors with relational, JSON, and graph data in Oracle Database 23ai.

- **Speed at scale:** Use HNSW indexes and efficient distance metrics (cosine, Euclidean, dot product).

- **Enterprise strength:** Count on Oracle’s security, manageability, and recovery.

- **AI-ready workflows:** Power RAG, recommendations, deduplication, and clustering.

- **Multimodal power:** Apply the same search to text, images, or any embedding.

- **Simpler stack:** Keep search and data together—cutting latency, risk, and cost.

This QuickStart shows you how similarity search works, how distance functions shape results, and how you can bring these capabilities into real applications with simple code.



## Acknowledgements
* **Author** - Kevin Lazarz, Database Product Management
* **Contributors** - William Masdon, Linda Foinding, Pat Sheppard, Francis Regalado,
* **Last Updated By/Date** - Kevin Lazarz, September 2025
35 changes: 35 additions & 0 deletions sample-quickstart-template/next-steps/next-steps.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Next Steps

Ready to go deeper? These workshops let you move from demo to hands-on practice.


## Try our Signature Workshop

What you’ll do:

- Add the new vector datatype.

- Verify ONNX embedding models.

- Create embeddings for text and images.

- Run exact and approximate similarity searches with indexes.

- Combine similarity search with relational queries.

- Apply everything in a pre-built APEX app.

👉 [Start the Advanced Workshop](https://livelabs.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=4166)


## Learn More

* [AI Vector Search Docs](https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/)
* [AI Vector Search Product Page](https://www.oracle.com/database/ai-vector-search/)
* [LiveLabs Workshop](https://livelabs.oracle.com/pls/apex/f?p=133:180:114898719666832::::wid:4166)


## Acknowledgements
* **Author** - Kevin Lazarz, Database Product Management
* **Contributors** - William Masdon, Linda Foinding, Pat Sheppard, Francis Regalado,
* **Last Updated By/Date** - Kevin Lazarz, September 2025
69 changes: 69 additions & 0 deletions sample-quickstart-template/quickstart/quickstart.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# QuickStart Demo

## Try AI Vector Search in Oracle Database 23ai

This QuickStart provides hands-on code snippets to get you started with AI Vector Search. You can copy and run these SQL commands in your Oracle Database 23ai environment.

### Step 1: Create a Table with a Vector Column

First, create a table to store vectors. The VECTOR datatype is new in Oracle Database 23ai.

```sql
CREATE TABLE my_vectors (
id NUMBER,
text_content VARCHAR2(4000),
embedding VECTOR
);
```

### Step 2: Generate Embeddings

Use the built-in embedding function to convert text into vectors. You'll need an ONNX model loaded in the database.

```sql
<copy>
-- Assuming a model named 'demo_model' is loaded
INSERT INTO my_vectors (id, text_content, embedding)
VALUES (
1,
'Oracle Database 23ai introduces AI Vector Search',
dbms_vector_chain.utl_to_embedding(
'Oracle Database 23ai introduces AI Vector Search',
JSON('{"provider":"database", "model":"demo_model"}')
)
);
</copy>
```

### Step 3: Perform Similarity Search

Find similar content using vector distance functions.

```sql
-- Search for similar content
SELECT id, text_content,
VECTOR_DISTANCE(
embedding,
dbms_vector_chain.utl_to_embedding(
'What is new in Oracle 23ai?',
JSON('{"provider":"database", "model":"demo_model"}')
),
COSINE
) AS distance
FROM my_vectors
ORDER BY distance
FETCH FIRST 5 ROWS ONLY;
```


These snippets demonstrate the core concepts. For production use, consider security, error handling, and performance tuning.

## Walkthrough

(placeholder for walkthrough video)
[](youtube:REPLACE_WITH_VIDEO_ID)

## Acknowledgements
* **Author** - Kevin Lazarz, Database Product Management
* **Contributors** - William Masdon, Linda Foinding, Pat Sheppard, Francis Regalado,
* **Last Updated By/Date** - Kevin Lazarz, September 2025
63 changes: 63 additions & 0 deletions sample-quickstart-template/workshops/quickstart/index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="Oracle LiveLabs gives you access to Oracle's products to run a wide variety of labs and workshops; allowing you to experience our best technology, live!">
<title>Oracle LiveLabs</title>

<script src="https://oracle-livelabs.github.io/common/redwood-hol/js/jquery-1.11.0.min.js"></script>
<script src="https://oracle-livelabs.github.io/common/redwood-hol/js/jquery-ui-1.10.4.custom.js"></script>
<script src="https://oracle-livelabs.github.io/common/redwood-hol/js/main.min.js"></script>

<link rel="stylesheet" href="https://oracle-livelabs.github.io/common/redwood-hol/css/style.min.css" />
<link rel="shortcut icon" href="https://oracle-livelabs.github.io/common/redwood-hol/img/favicon.ico" />

</head>

<body>
<header class="hol-Header" role="banner">
<div class="hol-Header-wrap">
<div class="hol-Header-logo"><span>Oracle LiveLabs</span></div>
<a href="https://livelabs.oracle.com" target="_blank" id="livelabs" title="Oracle LiveLabs"></a>
<div class="hol-Header-actions">
<button id="openNav" class="hol-Header-button hol-Header-button--menu rightNav" aria-label="Open Menu"
title="Open Menu">
<span class="hol-Header-toggleIcon"></span>
</button>
</div>
</div>
</header>

<div id="container">
<div id="leftNav">
<div id="toc"></div>
</div>
<div id="contentBox">
<main class="hol-Content" id="module-content"></main>
</div>
</div>

<footer class="hol-Footer">
<a class="hol-Footer-topLink" href="#top">Return to Top</a>
<div id="footer-banner"><div class="footer-row">
<div class="footer-content"><ul class="footer-links">
<li><a href="https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr" target="_blank" aria-label="Open a new window to Oracle legal notices" data-lbl="copyright">© Oracle</a></li>
<li><a href="https://www.oracle.com/corporate/index.html" target="_blank" aria-label="Open a new window to learn more about oracle" data-lbl="about-oracle">About Oracle</a></li>
<li><a href="https://www.oracle.com/corporate/contact/" target="_blank" aria-label="Open a new window to contact oracle" data-lbl="contact-us">Contact Us</a></li>
<li class="footer-links-break"></li>
<li><a href="https://docs.oracle.com/en/browseall.html" target="_blank" aria-label="Open a new window to products a-z" data-lbl="products-a-z">Products A-Z</a></li>
<li><a href="https://www.oracle.com/legal/privacy/" target="_blank" aria-label="Open a new window to read more about Oracle terms of use and privacy" data-lbl="terms-of-use-and-privacy">Terms of Use & Privacy</a></li>
<li><a href="https://www.oracle.com/legal/privacy/privacy-policy.html#11" target="_blank" aria-label="Open a new window to read more about managing Oracle cookie preferences" data-lbl="cookie-preferences">Cookie Preferences</a></li>
<li><a href="https://www.oracle.com/legal/privacy/marketing-cloud-data-cloud-privacy-policy.html#adchoices" target="_blank" aria-label="Open a new window to ad choices" data-lbl="ad-choices">Ad Choices</a></li>
<li class="footer-links-break"></li><li class="last"><a href="https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr" target="_blank" aria-label="Open a new window to Oracle legal notices" data-lbl="copyright">© Oracle</a></li>
</ul>
</div>
</div>
</div>
</footer>
</body>

</html>
17 changes: 17 additions & 0 deletions sample-quickstart-template/workshops/quickstart/manifest.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
{"help": "livelabs-help-db_us@oracle.com",
"workshoptitle": "LiveLabs QuickStart - AI Vector Search",
"tutorials": [
{
"title": "Introduction",
"filename": "../../intro/intro.md"
},
{
"title": "QuickStart",
"filename": "../../quickstart/quickstart.md"
},
{
"title": "Next Steps",
"filename": "../../next-steps/next-steps.md"
}
]
}