Reproducibility code for "A Quadratic Bézier Shuttle for Brent’s Root-Finder" (Applied Mathematics Letters 2025)
git clone https://github.com/oswcad/bezier_shuttle.git
cd bezier_shuttle
pip install -r requirements.txt
python table1.pyReproducibility code for the paper:
A Quadratic Bézier Shuttle for Brent’s Root-Finder
Oswaldo Cadenas
Applied Mathematics Letters, 2025 (submitted/accepted)
This repository reproduces Table 1 of the paper, comparing the original 1973 Brent method with the proposed two-step Bézier Shuttle + Brent hybrid.
The experiments confirm that the Bézier Shuttle safely reduces the iteration count for curved and oscillatory functions while preserving bracketing stability and final residual accuracy.
- Python ≥ 3.9
- NumPy ≥ 1.23
You can install the dependencies with:
pip install -r requirements.txt
To reproduce Table 1:
python table1.pyFunction α Brent Hybrid Gain Root
--------------------------------------------------------------------------------
e^(-x+11)-2 0.5 40 30 10 10.306853
0.1(x-2)(x-5)(x-8) 0.5 1 1 0 5.000000
sin(x)+0.5x-2 0.5 27 27 0 5.462807
(x-3.5)^(-1)+2 0.5 27 21 6 3.000000
ln(x+1)-2 0.5 39 28 11 6.389056
x^3-5x+1 adaptive 25 13 12 2.128419
cos(x)-x 0.5 11 13 -2 0.739085
e^(-x)-0.1 0.5 37 35 2 2.302585
• Brent (1973): Algorithms for Minimization Without Derivatives — the classical hybrid bisection/secant/IQI method.
• Bézier Shuttle (Cadenas 2025): a two-step quadratic Bézier contraction that precedes Brent’s landing phase. Each shuttle uses the midpoint ( x_c ) to curve the bracket toward the function’s shape before invoking Brent’s interpolation.
@article{cadenas2026bezier, title={A Bézier Shuttle for Accelerating Brent's Root-Finder}, author={Cadenas, Oswaldo}, journal={Applied Numerical Mathematics}, year={2025} }
MIT License © 2025 Oswaldo Cadenas
numpy>=1.23