Skip to content

ozsal/ai-driven-fall-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI-Driven Fall Detection System

A comprehensive IoT + AI-based fall detection system using Raspberry Pi, ESP8266 sensors, and Micro:bit wearable device.

🏗️ System Architecture

The system consists of:

  • ESP8266 Sensor Nodes: PIR motion sensor, Ultrasonic sensor, DHT22 (temperature/humidity)
  • Micro:bit Wearable: Accelerometer-based fall detection with TinyML
  • Raspberry Pi Backend: MQTT broker, FastAPI server, AI inference engine
  • Database: MongoDB for data storage
  • Frontend: React web dashboard and Flutter mobile app
  • Alert System: Push notifications and email alerts

📁 Project Structure

AI-driven-fall-detection/
├── esp8266-sensors/
│   ├── pir_ultrasonic_dht22/
│   └── mqtt_client/
├── microbit-wearable/
│   └── fall_detection/
├── raspberry-pi-backend/
│   ├── api/
│   ├── mqtt_broker/
│   ├── ml_models/
│   └── database/
├── web-dashboard/
│   └── react-app/
├── mobile-app/
│   └── flutter-app/
├── docs/
│   ├── architecture.md
│   └── flowcharts.md
├── Installation.md
└── README.md

🚀 Quick Start

Prerequisites

  • Raspberry Pi 4 (or compatible)
  • ESP8266 development boards (NodeMCU or similar)
  • Micro:bit v2
  • Sensors: PIR, HC-SR04 Ultrasonic, DHT22
  • Python 3.8+
  • Node.js 16+
  • Flutter SDK

Installation

  1. Raspberry Pi Setup

    cd raspberry-pi-backend
    pip install -r requirements.txt
  2. ESP8266 Setup

    • Install Arduino IDE
    • Install ESP8266 board support
    • Upload sensor node code
  3. Micro:bit Setup

    • Use MakeCode or MicroPython
    • Flash wearable code
  4. Web Dashboard

    cd web-dashboard/react-app
    npm install
    npm start
  5. Mobile App

    cd mobile-app/flutter-app
    flutter pub get
    flutter run

🔧 Hardware Connections

See Installation.md for detailed pin mappings, connection diagrams, and complete setup instructions.

📊 Features

  • Multi-sensor fall detection
  • Real-time monitoring dashboard
  • Mobile app notifications
  • Email alerts
  • Fall severity scoring
  • Historical data analysis
  • Room-level verification

📖 Documentation

🤝 Contributing

This is a production-ready system. Follow the code structure and add features as needed.

📝 License

MIT License

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published