A comprehensive IoT + AI-based fall detection system using Raspberry Pi, ESP8266 sensors, and Micro:bit wearable device.
The system consists of:
- ESP8266 Sensor Nodes: PIR motion sensor, Ultrasonic sensor, DHT22 (temperature/humidity)
- Micro:bit Wearable: Accelerometer-based fall detection with TinyML
- Raspberry Pi Backend: MQTT broker, FastAPI server, AI inference engine
- Database: MongoDB for data storage
- Frontend: React web dashboard and Flutter mobile app
- Alert System: Push notifications and email alerts
AI-driven-fall-detection/
├── esp8266-sensors/
│ ├── pir_ultrasonic_dht22/
│ └── mqtt_client/
├── microbit-wearable/
│ └── fall_detection/
├── raspberry-pi-backend/
│ ├── api/
│ ├── mqtt_broker/
│ ├── ml_models/
│ └── database/
├── web-dashboard/
│ └── react-app/
├── mobile-app/
│ └── flutter-app/
├── docs/
│ ├── architecture.md
│ └── flowcharts.md
├── Installation.md
└── README.md
- Raspberry Pi 4 (or compatible)
- ESP8266 development boards (NodeMCU or similar)
- Micro:bit v2
- Sensors: PIR, HC-SR04 Ultrasonic, DHT22
- Python 3.8+
- Node.js 16+
- Flutter SDK
-
Raspberry Pi Setup
cd raspberry-pi-backend pip install -r requirements.txt -
ESP8266 Setup
- Install Arduino IDE
- Install ESP8266 board support
- Upload sensor node code
-
Micro:bit Setup
- Use MakeCode or MicroPython
- Flash wearable code
-
Web Dashboard
cd web-dashboard/react-app npm install npm start -
Mobile App
cd mobile-app/flutter-app flutter pub get flutter run
See Installation.md for detailed pin mappings, connection diagrams, and complete setup instructions.
- Multi-sensor fall detection
- Real-time monitoring dashboard
- Mobile app notifications
- Email alerts
- Fall severity scoring
- Historical data analysis
- Room-level verification
- Complete Installation Guide - All setup instructions in one place
- System Architecture
- Flowcharts
This is a production-ready system. Follow the code structure and add features as needed.
MIT License