@@ -95,7 +95,7 @@ constructed from the sorted keys of the dict, if possible.
9595
9696 NaN (not a number) is the standard missing data marker used in pandas.
9797
98- **From scalar value **
98+ **From scalar value **
9999
100100If ``data `` is a scalar value, an index must be
101101provided. The value will be repeated to match the length of **index **.
@@ -154,7 +154,7 @@ See also the :ref:`section on attribute access<indexing.attribute_access>`.
154154Vectorized operations and label alignment with Series
155155~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
156156
157- When working with raw NumPy arrays, looping through value-by-value is usually
157+ When working with raw NumPy arrays, looping through value-by-value is usually
158158not necessary. The same is true when working with Series in pandas.
159159Series can also be passed into most NumPy methods expecting an ndarray.
160160
@@ -324,7 +324,7 @@ From a list of dicts
324324From a dict of tuples
325325~~~~~~~~~~~~~~~~~~~~~
326326
327- You can automatically create a multi-indexed frame by passing a tuples
327+ You can automatically create a multi-indexed frame by passing a tuples
328328dictionary.
329329
330330.. ipython :: python
@@ -347,7 +347,7 @@ column name provided).
347347**Missing Data **
348348
349349Much more will be said on this topic in the :ref: `Missing data <missing_data >`
350- section. To construct a DataFrame with missing data, we use ``np.nan `` to
350+ section. To construct a DataFrame with missing data, we use ``np.nan `` to
351351represent missing values. Alternatively, you may pass a ``numpy.MaskedArray ``
352352as the data argument to the DataFrame constructor, and its masked entries will
353353be considered missing.
@@ -370,7 +370,7 @@ set to ``'index'`` in order to use the dict keys as row labels.
370370
371371``DataFrame.from_records `` takes a list of tuples or an ndarray with structured
372372dtype. It works analogously to the normal ``DataFrame `` constructor, except that
373- the resulting DataFrame index may be a specific field of the structured
373+ the resulting DataFrame index may be a specific field of the structured
374374dtype. For example:
375375
376376.. ipython :: python
@@ -506,20 +506,21 @@ to be inserted (for example, a ``Series`` or NumPy array), or a function
506506of one argument to be called on the ``DataFrame ``. A *copy * of the original
507507DataFrame is returned, with the new values inserted.
508508
509- .. warning ::
510- Starting from Python 3.6 ``**kwargs `` is an ordered dictionary and :func: `DataFrame.assign `
511- respects the order of the keyword arguments. You may now use assign in the following way:
509+ Starting from Python 3.6 ``**kwargs `` is an ordered dictionary and :func: `DataFrame.assign `
510+ respects the order of the keyword arguments. You can use assign in the following way:
511+
512+ .. ipython :: python
512513
513- .. ipython :: python
514+ dfa = pd.DataFrame({" A" : [1 , 2 , 3 ],
515+ " B" : [4 , 5 , 6 ]})
516+ dfa.assign(C = lambda x : x[' A' ] + x[' B' ],
517+ D = lambda x : x[' A' ] + x[' C' ])
514518
515- df_warn = pd.DataFrame({" A" : [1 , 2 , 3 ],
516- " B" : [4 , 5 , 6 ]})
517- df_warn.assign(C = lambda x : x[' A' ] + x[' B' ],
518- D = lambda x : x[' A' ] + x[' C' ])
519+ .. warning ::
519520
520- This may subtly change the behavior of your code when you're
521- using :func: `DataFrame.assign ` to update an existing column. Prior to Python 3.6,
522- callables referring to other variables being updated would get the "old" values
521+ This may subtly change the behavior of your code when you are
522+ using :func: `DataFrame.assign ` to update an existing column. Prior to Python 3.6,
523+ callables referring to other variables being updated would get the "old" values.
523524
524525Indexing / Selection
525526~~~~~~~~~~~~~~~~~~~~
@@ -909,7 +910,7 @@ For example, using the earlier example data, we could do:
909910 Squeezing
910911~~~~~~~~~
911912
912- Another way to change the dimensionality of an object is to ``squeeze `` a 1-len
913+ Another way to change the dimensionality of an object is to ``squeeze `` a 1-len
913914object, similar to ``wp['Item1'] ``.
914915
915916.. ipython :: python
0 commit comments