Skip to content

Using "index" in a Series with a dict produces results inconsistent with documentation. #28418

@jsal13

Description

@jsal13

Code Sample, a copy-pastable example if possible

# The first case shows that dicts cause the index argument to be more of a WHERE selector for rows...

>>> pd.Series({"a": 1, "b": 2, "c": 3}, index=["a", "b"])
a    1
b    2
dtype: int64

# But the docs + using a list have an error thrown if the index size does not match the length of the data.
>>> pd.Series(["a", "b", "c"], index=[0, 1])
# Error...
ValueError: Length of passed values is 3, index implies 2

Problem description

The current behavior with dicts is inconsistent with the documentation. Moreover, there should be consistent behavior between passing a dict and passing an array into the series.

Expected Output

Output of pd.show_versions()

[paste the output of pd.show_versions() here below this line]
INSTALLED VERSIONS

commit : None
python : 3.7.3.final.0
python-bits : 64
OS : Darwin
OS-release : 17.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 0.25.1
numpy : 1.17.2
pytz : 2019.2
dateutil : 2.8.0
pip : 19.1.1
setuptools : 41.2.0
Cython : 0.29.12
pytest : 5.0.1
hypothesis : None
sphinx : 2.1.2
blosc : None
feather : None
xlsxwriter : 1.1.8
lxml.etree : 4.3.4
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.6.1
pandas_datareader: None
bs4 : 4.7.1
bottleneck : 1.2.1
fastparquet : None
gcsfs : None
lxml.etree : 4.3.4
matplotlib : 3.1.0
numexpr : 2.6.9
odfpy : None
openpyxl : 2.6.2
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.0
sqlalchemy : 1.3.8
tables : 3.5.2
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : 1.1.8

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions