-
-
Notifications
You must be signed in to change notification settings - Fork 19.2k
Closed
Labels
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
def resample_each_item(dtype) -> pd.DataFrame:
df = pd.DataFrame(
[
["A", "2023-01-15", 42],
["A", "2023-01-17", 33],
["B", "2023-02-20", 78],
["B", "2023-02-23", 91],
],
columns=["item_id", "timestamp", "target"],
)
df["timestamp"] = pd.to_datetime(df["timestamp"]).astype(dtype)
df = df.set_index(["item_id", "timestamp"])
resampled = []
for item_id in ["A", "B"]:
resampled.append(pd.concat({item_id: df.loc[item_id].resample("D", level="timestamp").mean()}))
return pd.concat(resampled)
print(resample_each_item("datetime64[ns]"))
# For datetime64[ns] all timestamps are valid
# target
# timestamp
# A 2023-01-15 42.0
# 2023-01-16 NaN
# 2023-01-17 33.0
# B 2023-02-20 78.0
# 2023-02-21 NaN
# 2023-02-22 NaN
# 2023-02-23 91.0
print(resample_each_item("datetime64[ms]"))
# For datetime64[ms] or datetime64[s] dtypes, NaT values are introduced
# target
# timestamp
# A 2023-01-15 42.0
# NaT NaN
# NaT 33.0
# B 2023-02-20 78.0
# NaT NaN
# NaT NaN
# NaT 91.0Issue Description
When concatenating data frames with MultiIndex, where one level is of type datetime64[ms] or datetime64[s], some timestamps are replaced with NaT. If the timestamps are of dtype datetime64[ns], no NaT values are introduced.
Expected Behavior
No NaT values are introduced, regardless of whether the timestamp dtype is datetime64[ms], datetime64[s] or datetime64[ns].
Installed Versions
INSTALLED VERSIONS
------------------
commit : 0691c5cf90477d3503834d983f69350f250a6ff7
python : 3.12.9
python-bits : 64
OS : Linux
OS-release : 6.1.132-147.221.amzn2023.x86_64
Version : #1 SMP PREEMPT_DYNAMIC Tue Apr 8 13:14:54 UTC 2025
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : C.UTF-8
pandas : 2.2.3
numpy : 1.26.4
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : None
sphinx : None
IPython : 8.12.3
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.12.0
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : None
matplotlib : 3.10.1
numba : 0.61.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.1
pyreadstat : None
pytest : 8.3.5
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.2
sqlalchemy : 2.0.40
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None