-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
import time
import platform
n = 2_000_000
window = 500
s = pd.Series(np.random.randn(n), name="x")
_ = s.rolling(window).std()
t0 = time.perf_counter()
_ = s.rolling(window).std()
t = time.perf_counter() - t0
print(f"Rolling std({window}) on {n:,} rows took {t:.4f} s")
Running on current dev (installed by pip install git+https://github.com/pandas-dev/pandas.git
or pip install --pre --extra-index https://pypi.anaconda.org/scientific-python-nightly-wheels/simple pandas)
I get
Rolling std(500) on 2,000,000 rows took 4.3563 s
Installed Versions
INSTALLED VERSIONS
commit : c4449f0
python : 3.14.0
python-bits : 64
OS : Windows
OS-release : 2022Server
Version : 10.0.22631
machine : AMD64
processor : AMD64 Family 25 Model 24 Stepping 1, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 3.0.0.dev0+2533.gc4449f0e1c
numpy : 2.3.3
dateutil : 2.9.0.post0
pip : 25.2
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : 3.10.6
numba : None
numexpr : None
odfpy : None
openpyxl : None
psycopg2 : None
pymysql : None
pyarrow : None
pyiceberg : None
pyreadstat : None
pytest : None
python-calamine : None
pytz : 2025.2
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
qtpy : None
pyqt5 : None
Prior Performance
Running on pandas 2.3.3 I get
Rolling std(500) on 2,000,000 rows took 0.0377 s
Results on python 3.12 and 3.13 are same