-
-
Couldn't load subscription status.
- Fork 19.2k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
# Sample DataFrame
df = pd.DataFrame({
"Department": ["HR", "HR", "Finance", "Finance", "IT", "IT", "Finance", "HR", "IT", "Finance"],
"Gender": ["F", "M", "M", "F", "M", "F", "M", "F", "M", "F"],
"Location": ["NY", "CA", "CA", "NY", "CA", "NY", "CA", "CA", "CA", "NY"]
})
# Counts combinations of three columns, but wrong column labels assigned:
print(
df
.value_counts(subset=["Department", "Gender", "Location"])
.unstack(fill_value=0, sort=False)
)
# output:
Location CA NY
Department Gender
Finance F 0 2
M 2 0
HR F 1 1
M 1 0
IT F 0 1
M 2 0Issue Description
In Pandas (v2.3), I have noticed an issue with .unstack(fill_value=0, sort=False) where incorrect column labels are assigned to column values.
For example, if you add the sort=False, the counts are not correct:
print(
df
.value_counts(subset=["Department", "Gender", "Location"])
.unstack(fill_value=0, sort=False)
)The output is:
Location NY CA
Department Gender
Finance F 0 2
M 2 0
IT M 2 1
HR F 1 0
M 0 1
IT F 1 0
Note that the dataframe contains no female in the Finnance department in CA.
I have seen related bug reports (#55516 and #53910) where this argument is supposed to be deprecated. But it seems that no warning is being issued for the deprecation.
Expected Behavior
The following works as expected:
# note: use the above "reproducible" code to generate the `df`
print(
df
.value_counts(subset=["Department", "Gender", "Location"])
.unstack(fill_value=0) # without sort argument
)output:
Location CA NY
Department Gender
Finance F 0 2
M 2 0
HR F 1 1
M 1 0
IT F 0 1
M 2 0
Installed Versions
INSTALLED VERSIONS
commit : 2cc3762
python : 3.12.7
python-bits : 64
OS : Linux
OS-release : 4.18.0-372.32.1.el8_6.x86_64
Version : #1 SMP Thu Oct 27 15:18:36 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.3.0
numpy : 2.2.6
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.2
Cython : None
sphinx : None
IPython : 9.3.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.4
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : None
matplotlib : 3.10.3
numba : 0.61.2
numexpr : None
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : 2.0.2
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None