Skip to content

Commit 8f8fae0

Browse files
committed
math expression sroompath
1 parent 4bb5ddf commit 8f8fae0

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

contests/_37-PDP/b-shroompath-solution.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -142,13 +142,13 @@ $$p(k+1)=2^{(k+1)+1}\cdot ((k+1)-1)+2 =2^{k+2}\cdot k + 2$$
142142
Γνωρίζουμε ότι
143143

144144
$$\begin{aligned}
145-
p(k+1) = p(k) + f(k+1)\\
146-
=2^{k+1}\cdot (k-1)+2 + 2^{k+1} \cdot (k+1)\\
147-
=2^{k+1}\cdot k - 2^{k+1} + 2 + 2^{k+1}\cdot k + 2^{k+1}\\
148-
=2^{k+1}\cdot k - \cancel{2^{k+1}} + 2 + 2^{k+1}\cdot k + \cancel{2^{k+1}}\\
149-
=2^{k+1}\cdot k + 2^{k+1}\cdot k + 2\\
150-
=2\cdot 2^{k+1} \cdot k + 2\\
151-
=2^{k+2}\cdot k +2
145+
p(k+1) &= p(k) + f(k+1)\\
146+
&=2^{k+1}\cdot (k-1)+2 + 2^{k+1} \cdot (k+1)\\
147+
&=2^{k+1}\cdot k - 2^{k+1} + 2 + 2^{k+1}\cdot k + 2^{k+1}\\
148+
&=2^{k+1}\cdot k - \cancel{2^{k+1}} + 2 + 2^{k+1}\cdot k + \cancel{2^{k+1}}\\
149+
&=2^{k+1}\cdot k + 2^{k+1}\cdot k + 2\\
150+
&=2\cdot 2^{k+1} \cdot k + 2\\
151+
&=2^{k+2}\cdot k +2
152152
\end{aligned}$$
153153

154154
άρα καταλήγουμε ότι ισχύει η $$p(k+1)$$, άρα η σχέση μας ισχύει για όλα τα $$k\ge1$$.

0 commit comments

Comments
 (0)