File tree Expand file tree Collapse file tree 1 file changed +7
-7
lines changed Expand file tree Collapse file tree 1 file changed +7
-7
lines changed Original file line number Diff line number Diff line change @@ -142,13 +142,13 @@ $$p(k+1)=2^{(k+1)+1}\cdot ((k+1)-1)+2 =2^{k+2}\cdot k + 2$$
142142Γνωρίζουμε ότι
143143
144144$$ \begin{aligned}
145- p(k+1) = p(k) + f(k+1)\\
146- =2^{k+1}\cdot (k-1)+2 + 2^{k+1} \cdot (k+1)\\
147- =2^{k+1}\cdot k - 2^{k+1} + 2 + 2^{k+1}\cdot k + 2^{k+1}\\
148- =2^{k+1}\cdot k - \cancel{2^{k+1}} + 2 + 2^{k+1}\cdot k + \cancel{2^{k+1}}\\
149- =2^{k+1}\cdot k + 2^{k+1}\cdot k + 2\\
150- =2\cdot 2^{k+1} \cdot k + 2\\
151- =2^{k+2}\cdot k +2
145+ p(k+1) & = p(k) + f(k+1)\\
146+ & =2^{k+1}\cdot (k-1)+2 + 2^{k+1} \cdot (k+1)\\
147+ & =2^{k+1}\cdot k - 2^{k+1} + 2 + 2^{k+1}\cdot k + 2^{k+1}\\
148+ & =2^{k+1}\cdot k - \cancel{2^{k+1}} + 2 + 2^{k+1}\cdot k + \cancel{2^{k+1}}\\
149+ & =2^{k+1}\cdot k + 2^{k+1}\cdot k + 2\\
150+ & =2\cdot 2^{k+1} \cdot k + 2\\
151+ & =2^{k+2}\cdot k +2
152152\end{aligned} $$
153153
154154άρα καταλήγουμε ότι ισχύει η $$ p(k+1) $$ , άρα η σχέση μας ισχύει για όλα τα $$ k\ge1 $$ .
You can’t perform that action at this time.
0 commit comments