Skip to content

A Python implementation demonstrating three fundamental linked list techniques with clear examples and detailed explanations. Features Multiple Pass, Temporary Head, and Fast-Slow Pointer algorithms for common linked list operations including finding middle elements, reversing lists, and cycle detection.

Notifications You must be signed in to change notification settings

pencil-dev/linked-list-techniques

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Linked List Techniques Implementation

A comprehensive implementation of linked list data structures demonstrating three key algorithmic techniques: Multiple Pass, Slow-Fast Pointer, and Temporary Head.

🚀 Quick Start

# Run all examples
python examples/demo_all.py

# Run specific technique demos
python examples/demo_multiple_pass.py
python examples/demo_slow_fast.py
python examples/demo_temporary_head.py

# Run all tests
python tests/run_all_tests.py

📁 Project Structure

.
├── src/                          # Source code
│   ├── __init__.py              # Package initialization
│   ├── linked_list_base.py      # Base Node and LinkedList classes
│   ├── multiple_pass.py         # Multiple pass technique implementation
│   ├── slow_fast.py             # Slow-fast pointer technique implementation
│   └── temporary_head.py        # Temporary head technique implementation
├── tests/                        # Unit tests
│   ├── __init__.py              # Test package initialization
│   ├── test_linked_list_base.py # Base class tests (9 tests)
│   ├── test_multiple_pass.py    # Multiple pass tests (10 tests)
│   ├── test_slow_fast.py        # Slow-fast pointer tests (14 tests)
│   ├── test_temporary_head.py   # Temporary head tests (20 tests)
│   └── run_all_tests.py         # Test runner (53 total tests)
├── examples/                     # Demo scripts
│   ├── demo_multiple_pass.py    # Multiple pass technique demo
│   ├── demo_slow_fast.py        # Slow-fast pointer technique demo
│   ├── demo_temporary_head.py   # Temporary head technique demo
│   └── demo_all.py              # Comprehensive demo
├── docs/                         # Documentation
│   └── README_TESTS.md          # Test documentation
└── README.md                    # This file

🎯 Techniques Implemented

1. Multiple Pass Technique

Purpose: Find the middle element of a linked list Algorithm: Two-pass approach - count nodes, then traverse to middle Time Complexity: O(n) | Space Complexity: O(1)

from src import MultiplePassLinkedList

llist = MultiplePassLinkedList()
for i in range(1, 6):
    llist.append(i)

middle = llist.find_middle()  # Returns 3

2. Slow-Fast Pointer Technique (Floyd's Algorithm)

Purpose: Detect cycles in linked lists Algorithm: Two pointers moving at different speeds Time Complexity: O(n) | Space Complexity: O(1)

from src import SlowFastLinkedList

llist = SlowFastLinkedList()
for i in range(1, 6):
    llist.append(i)

llist.create_cycle(1)  # Create cycle: 5 -> 2
cycle_start = llist.find_cycle_start()  # Returns 2

3. Temporary Head Technique

Purpose: Simplify deletion and reversal operations Algorithm: Use dummy node to handle edge cases Time Complexity: O(n) | Space Complexity: O(1)

from src import TemporaryHeadLinkedList

llist = TemporaryHeadLinkedList()
for i in range(1, 6):
    llist.append(i)

llist.delete_node(1)  # Delete head - simplified with dummy node
llist.reverse()       # Reverse list using temporary head

🧪 Testing

The project includes comprehensive unit tests with 53 total tests covering:

  • ✅ Core functionality and edge cases
  • ✅ Algorithm correctness verification
  • ✅ Different data types (integers, strings, mixed)
  • ✅ Error handling and invalid inputs
  • ✅ Performance characteristics
# Run all tests with detailed output
python tests/run_all_tests.py

# Run specific test modules
python -m unittest tests.test_multiple_pass -v
python -m unittest tests.test_slow_fast -v
python -m unittest tests.test_temporary_head -v

📊 Performance Comparison

Technique Operation Time Space Use Case
Multiple Pass Find Middle O(n) O(1) When you need exact middle
Slow-Fast Cycle Detection O(n) O(1) Detect loops/cycles
Slow-Fast Find Middle O(n) O(1) One-pass middle finding
Temporary Head Deletion O(n) O(1) Simplified edge cases
Temporary Head Reversal O(n) O(1) Clean reversal logic

🔧 Usage Examples

Basic Usage

# Import all classes
from src import (
    LinkedList,
    MultiplePassLinkedList,
    SlowFastLinkedList,
    TemporaryHeadLinkedList
)

# Create and populate lists
llist = MultiplePassLinkedList()
for i in range(1, 6):
    llist.append(i)

# Use specific techniques
middle = llist.find_middle()

Advanced Usage

# Cycle detection example
cycle_list = SlowFastLinkedList()
for i in range(1, 8):
    cycle_list.append(i)

cycle_list.create_cycle(2)  # Create cycle at position 2
if cycle_list.find_cycle_start():
    print("Cycle detected!")

🎓 Educational Value

This implementation demonstrates:

  1. Algorithm Design Patterns: Common techniques used in competitive programming
  2. Edge Case Handling: Proper handling of empty lists, single elements, etc.
  3. Code Organization: Clean separation of concerns and modular design
  4. Testing Practices: Comprehensive unit testing with edge cases
  5. Documentation: Clear explanations and usage examples

🤝 Contributing

  1. All code follows Python best practices
  2. Comprehensive tests are required for new features
  3. Documentation should be updated for any changes
  4. Examples should demonstrate real-world usage

📚 Further Reading

About

A Python implementation demonstrating three fundamental linked list techniques with clear examples and detailed explanations. Features Multiple Pass, Temporary Head, and Fast-Slow Pointer algorithms for common linked list operations including finding middle elements, reversing lists, and cycle detection.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%