Exploring quantum autoencoders for image patch compression and reconstruction. This project compares quantum and classical autoencoders using Qiskit and TensorFlow to evaluate compression fidelity, resource efficiency, and potential for quantum-enhanced anomaly detection.
- Python 3.13
- pip (latest version recommended)
Run the following commands in the QuantumAutoencode
directory:
python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip && pip install -r requirements.txt
Run the following commands in the QuantumAutoencode
directory:
python -m venv venv
./venv/scripts/activate
python -m pip install --upgrade pip
pip install -r requirements.txt
QuantumAutoencode/
├── classical/ # Classical autoencoder implementation
├── datasets/ # Dataset files and README
├── quantum/ # Quantum autoencoder implementation
├── tests/ # Unit tests
├── requirements.txt # Python dependencies
├── ruff.toml # Linter configuration
└── README.md # Project documentation
Run the following command from the QuantumAutoencode
directory to execute the unit tests:
python -m pytest tests