Skip to content

The official implementation of "CLRerNet: Improving Confidence of Lane Detection with LaneIoU"

License

Notifications You must be signed in to change notification settings

PINTO0309/CLRerNet

 
 

Repository files navigation

PWC

CLRerNet Official Implementation

The official implementation of our paper "CLRerNet: Improving Confidence of Lane Detection with LaneIoU", by Hiroto Honda and Yusuke Uchida.

Method

CLRerNet features LaneIoU for the target assignment cost and loss functions aiming at the improved quality of confidence scores.
LaneIoU takes the local lane angles into consideration to better correlate with the segmentation-based IoU metric.

Performance

CLRerNet achieves the state-of-the-art performance on CULane benchmark significantly surpassing the baseline.

Model Backbone F1 score GFLOPs
CLRNet DLA34 80.47 18.4
CLRerNet DLA34 81.12±0.04 * 18.4
CLRerNet⋆ DLA34 81.43±0.14 * 18.4

* F1 score stats of five models reported in our paper. The release models' scores are 81.11 (CLRerNet) and 81.55 (CLRerNet⋆, EMA model) respectively.

Install

Docker environment is recommended for installation:

docker-compose build --build-arg UID="`id -u`" dev
docker-compose run --rm dev

See Installation Tips for more details.

Inference

Run the following command to detect the lanes from the image and visualize them:

python demo/image_demo.py demo/demo.jpg configs/clrernet/culane/clrernet_culane_dla34_ema.py clrernet_culane_dla34_ema.pth --out-file=result.png

Test

Run the following command to evaluate the model on CULane dataset:

python tools/test.py configs/clrernet/culane/clrernet_culane_dla34_ema.py clrernet_culane_dla34_ema.pth

For dataset preparation, please refer to Dataset Preparation.

Train

Coming soon...

Citation

@article{honda2023clrernet,
      title={CLRerNet: Improving Confidence of Lane Detection with LaneIoU},
      author={Hiroto Honda and Yusuke Uchida},
      journal={arXiv preprint arXiv:2305.08366},
      year={2023},
}

References

About

The official implementation of "CLRerNet: Improving Confidence of Lane Detection with LaneIoU"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 89.7%
  • Cuda 5.9%
  • Dockerfile 2.3%
  • C++ 2.1%