Skip to content

Commit 3fa9585

Browse files
committed
Site updated at 2015-09-07 01:40:37 UTC
1 parent d0d016a commit 3fa9585

File tree

418 files changed

+49254
-20514
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

418 files changed

+49254
-20514
lines changed
Lines changed: 24 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -1,32 +1,26 @@
1-
# Learn about API authentication here: https://plot.ly/julia/getting-started
2-
# Find your api_key here: https://plot.ly/settings/api
1+
% Learn about API authentication here: https://plot.ly/matlab/getting-started
2+
% Find your api_key here: https://plot.ly/settings/api
33

4-
using Plotly
4+
x = randn(500,1);
5+
y = randn(500,1)+1;
56

6-
x = randn(500)
7-
y = randn(500)+1
8-
9-
10-
data = [
11-
[
12-
"x" => x,
13-
"y" => y,
14-
"histnorm" => "probability",
15-
"autobinx" => false,
16-
"xbins" => [
17-
"start" => -3,
18-
"end" => 3,
19-
"size" => 0.1
20-
],
21-
"autobiny" => false,
22-
"ybins" => [
23-
"start" => -2.5,
24-
"end" => 4,
25-
"size" => 0.1
26-
],
27-
"colorscale" => {[0, "rgb(12,51,131)"],[0.25, "rgb(10,136,186)"],[0.5, "rgb(242,211,56)"],[0.75, "rgb(242,143,56)"],[1, "rgb(217,30,30)"]},
28-
"type" => "histogram2d"
29-
]
30-
]
31-
response = Plotly.plot(data, ["filename" => "2d-histogram-options", "fileopt" => "overwrite"])
32-
plot_url = response["url"]
7+
data = {...
8+
struct(...
9+
'x', x, ...
10+
'y', y, ...
11+
'histnorm', 'probability', ...
12+
'autobinx', false, ...
13+
'xbins', struct(...
14+
'start', -3, ...
15+
'end', 3, ...
16+
'size', 0.1), ...
17+
'autobiny', false, ...
18+
'ybins', struct(...
19+
'start', -2.5, ...
20+
'end', 4, ...
21+
'size', 0.1), ...
22+
'colorscale', { { {0, 'rgb(12,51,131)'},{0.25, 'rgb(10,136,186)'},{0.5, 'rgb(242,211,56)'},{0.75, 'rgb(242,143,56)'},{1, 'rgb(217,30,30)'} } }, ...
23+
'type', 'histogram2d')...
24+
};
25+
response = plotly(data, struct('filename', '2d-histogram-options', 'fileopt', 'overwrite'));
26+
plot_url = response.url
Lines changed: 39 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -1,44 +1,42 @@
1-
var x0 = [];
2-
var y0 = [];
3-
var x1 = [];
4-
var y1 = [];
5-
for (var i = 0; i < 500; i ++) {
6-
x0[i] = Math.random() / 5 * 0.5;
7-
y0[i] = Math.random() / 5 * 0.5;
8-
}
1+
# Learn about API authentication here: https://plot.ly/julia/getting-started
2+
# Find your api_key here: https://plot.ly/settings/api
93

10-
for (var i = 0; i < 50; i ++) {
11-
x1[i] = Math.random();
12-
y1[i] = Math.random() + 1;
13-
}
4+
using Plotly
145

15-
var x = [x0, x1]
16-
var y = [y0, y1]
6+
x0 = randn(100)/5. + 0.5
7+
y0 = randn(100)/5. + 0.5
8+
x1 = rand(50)
9+
y1 = rand(50) + 1.0
1710

18-
var trace1 = {
19-
x: x0,
20-
y: y0,
21-
mode: 'markers',
22-
marker: {
23-
symbol: 'circle',
24-
opacity: 0.7
25-
},
26-
type: 'scatter'
27-
};
28-
var trace2 = {
29-
x: x1,
30-
y: y1,
31-
mode: 'markers',
32-
marker: {
33-
symbol: 'square',
34-
opacity: 0.7
35-
},
36-
type: 'scatter'
37-
};
38-
var trace3 = {
39-
x: x,
40-
y: y,
41-
type: 'histogram2d'
42-
};
43-
var data = [trace1, trace2, trace3];
44-
Plotly.newPlot('myDiv', data);
11+
x = [x0; x1]
12+
y = [y0; y1]
13+
14+
15+
trace1 = [
16+
"x" => x0,
17+
"y" => y0,
18+
"mode" => "markers",
19+
"marker" => [
20+
"symbol" => "circle",
21+
"opacity" => 0.7
22+
],
23+
"type" => "scatter"
24+
]
25+
trace2 = [
26+
"x" => x1,
27+
"y" => y1,
28+
"mode" => "markers",
29+
"marker" => [
30+
"symbol" => "square",
31+
"opacity" => 0.7
32+
],
33+
"type" => "scatter"
34+
]
35+
trace3 = [
36+
"x" => x,
37+
"y" => y,
38+
"type" => "histogram2d"
39+
]
40+
data = [trace1, trace2, trace3]
41+
response = Plotly.plot(data, ["filename" => "2d-histogram-scatter", "fileopt" => "overwrite"])
42+
plot_url = response["url"]

2015/04/09/2d-histogram.html

Lines changed: 18 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,18 @@
1-
var x = [];
2-
var y = [];
3-
for (var i = 0; i < 500; i ++) {
4-
x[i] = Math.random();
5-
y[i] = Math.random() + 1;
6-
}
7-
8-
var data = [
9-
{
10-
x: x,
11-
y: y,
12-
type: 'histogram2d'
13-
}
14-
];
15-
Plotly.newPlot('myDiv', data);
1+
# Learn about API authentication here: https://plot.ly/julia/getting-started
2+
# Find your api_key here: https://plot.ly/settings/api
3+
4+
using Plotly
5+
6+
x = randn(500)
7+
y = randn(500)+1
8+
9+
10+
data = [
11+
[
12+
"x" => x,
13+
"y" => y,
14+
"type" => "histogram2d"
15+
]
16+
]
17+
response = Plotly.plot(data, ["filename" => "2d-histogram", "fileopt" => "overwrite"])
18+
plot_url = response["url"]
Lines changed: 60 additions & 70 deletions
Original file line numberDiff line numberDiff line change
@@ -1,92 +1,82 @@
1-
# Learn about API authentication here: https://plot.ly/pandas/getting-started
1+
# Learn about API authentication here: https://plot.ly/python/getting-started
22
# Find your api_key here: https://plot.ly/settings/api
33

44
import plotly.plotly as py
55
from plotly.graph_objs import *
6-
import pandas as pd
7-
import numpy as np
8-
import colorlover as cl
9-
from scipy.stats import gaussian_kde
10-
11-
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/iris.csv')
12-
df.head()
136

14-
scl = cl.scales['9']['seq']['Blues']
15-
colorscale = [ [ float(i)/float(len(scl)-1), scl[i] ] for i in range(len(scl)) ]
16-
colorscale
17-
18-
def kde_scipy(x, x_grid, bandwidth=0.2 ):
19-
kde = gaussian_kde(x, bw_method=bandwidth / x.std(ddof=1) )
20-
return kde.evaluate(x_grid)
7+
import numpy as np
218

22-
x_grid = np.linspace(df['SepalWidth'].min(), df['SepalWidth'].max(), 100)
23-
y_grid = np.linspace(df['PetalLength'].min(), df['PetalLength'].max(), 100)
9+
t = np.linspace(-1,1.2,2000)
10+
x = (t**3)+(0.3*np.random.randn(2000))
11+
y = (t**6)+(0.3*np.random.randn(2000))
2412

25-
trace1 = Histogram2dContour(
26-
x=df['SepalWidth'],
27-
y=df['PetalLength'],
13+
trace1 = Scatter(
14+
x=x,
15+
y=y,
16+
mode='markers',
17+
name='points',
18+
marker=Marker(
19+
color='rgb(102,0,0)',
20+
size=2,
21+
opacity=0.4
22+
)
23+
)
24+
trace2 = Histogram2dContour(
25+
x=x,
26+
y=y,
2827
name='density',
2928
ncontours=20,
30-
colorscale=colorscale,
29+
colorscale='Hot',
30+
reversescale=True,
3131
showscale=False
3232
)
33-
trace2 = Histogram(
34-
x=df['SepalWidth'],
33+
trace3 = Histogram(
34+
x=x,
3535
name='x density',
36-
yaxis='y2',
37-
histnorm='probability density',
38-
marker=Marker(color='rgb(217, 217, 217)'),
39-
nbinsx=25
40-
)
41-
trace2s = Scatter(
42-
x=x_grid,
43-
y=kde_scipy( df['SepalWidth'].as_matrix(), x_grid ),
44-
yaxis='y2',
45-
line = Line( color='rgb(31, 119, 180)' ),
46-
fill='tonexty',
36+
marker=Marker(
37+
color='rgb(102,0,0)'
38+
),
39+
yaxis='y2'
4740
)
48-
trace3 = Histogram(
49-
y=df['PetalLength'],
41+
trace4 = Histogram(
42+
y=y,
5043
name='y density',
51-
xaxis='x2',
52-
histnorm='probability density',
53-
marker=Marker(color='rgb(217, 217, 217)'),
54-
nbinsy=50
55-
)
56-
trace3s = Scatter(
57-
y=y_grid,
58-
x=kde_scipy( df['PetalLength'].as_matrix(), y_grid ),
59-
xaxis='x2',
60-
line = Line( color='rgb(31, 119, 180)' ),
61-
fill='tonextx',
44+
marker=Marker(
45+
color='rgb(102,0,0)'
46+
),
47+
xaxis='x2'
6248
)
63-
64-
data = Data([trace1, trace2, trace2s, trace3, trace3s])
65-
49+
data = Data([trace1, trace2, trace3, trace4])
6650
layout = Layout(
6751
showlegend=False,
6852
autosize=False,
69-
width=700,
70-
height=700,
53+
width=600,
54+
height=550,
55+
xaxis=XAxis(
56+
domain=[0, 0.85],
57+
showgrid=False,
58+
zeroline=False
59+
),
60+
yaxis=YAxis(
61+
domain=[0, 0.85],
62+
showgrid=False,
63+
zeroline=False
64+
),
65+
margin=Margin(
66+
t=50
67+
),
7168
hovermode='closest',
7269
bargap=0,
73-
74-
xaxis=XAxis(domain=[0, 0.746], linewidth=2, linecolor='#444', title='SepalWidth',
75-
showgrid=False, zeroline=False, ticks='', showline=True, mirror=True),
76-
77-
yaxis=YAxis(domain=[0, 0.746],linewidth=2,linecolor='#444', title='PetalLength',
78-
showgrid=False, zeroline=False, ticks='', showline=True, mirror=True),
79-
80-
xaxis2=XAxis( domain=[0.75, 1], showgrid=False, zeroline=False, ticks='',
81-
showticklabels=False ),
82-
83-
yaxis2=YAxis( domain=[0.75, 1], showgrid=False, zeroline=False, ticks='',
84-
showticklabels=False ),
70+
xaxis2=XAxis(
71+
domain=[0.85, 1],
72+
showgrid=False,
73+
zeroline=False
74+
),
75+
yaxis2=YAxis(
76+
domain=[0.85, 1],
77+
showgrid=False,
78+
zeroline=False
79+
)
8580
)
86-
8781
fig = Figure(data=data, layout=layout)
88-
89-
# IPython notebook
90-
# py.iplot(fig, filename='pandas-2d-density-plot', height=700)
91-
92-
url = py.plot(fig, filename='pandas-2d-density-plot')
82+
plot_url = py.plot(fig, filename='2dhistogram-2d-density-plot-subplots')

2015/04/09/Blackbody-heatmap.html

Lines changed: 9 additions & 16 deletions
Large diffs are not rendered by default.

2015/04/09/Bluered-heatmap.html

Lines changed: 12 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,17 @@
1+
// Learn about API authentication here: https://plot.ly/nodejs/getting-started
2+
// Find your api_key here: https://plot.ly/settings/api
3+
4+
require('plotly')(username, api_key);
5+
16
var data = [
27
{
38
z: [[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51], [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52], [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53], [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66], [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67], [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69], [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70], [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73], [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75], [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76], [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77], [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80], [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84], [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90], [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91], [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92], [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96], [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]],
4-
colorscale: 'Bluered',
5-
type: 'heatmap'
9+
colorscale: "Bluered",
10+
type: "heatmap"
611
}
712
];
8-
var layout = {title: 'Bluered'};
9-
Plotly.newPlot('myDiv', data, layout);
13+
var layout = {title: "Bluered"};
14+
var graphOptions = {layout: layout, filename: "Bluered-heatmap", fileopt: "overwrite"};
15+
plotly.plot(data, graphOptions, function (err, msg) {
16+
console.log(msg);
17+
});

0 commit comments

Comments
 (0)