|
| 1 | +import pytest |
| 2 | +import ray |
| 3 | +import pandas as pd |
| 4 | +import numpy as np |
| 5 | +from sklearn.compose import ColumnTransformer |
| 6 | +from sklearn.model_selection import train_test_split |
| 7 | +from sklearn.pipeline import Pipeline |
| 8 | +from sklearn.preprocessing import StandardScaler, MinMaxScaler |
| 9 | +from sklearn.tree import DecisionTreeClassifier |
| 10 | +import codeflare.pipelines.Datamodel as dm |
| 11 | +import codeflare.pipelines.Runtime as rt |
| 12 | +from codeflare.pipelines.Datamodel import Xy |
| 13 | +from codeflare.pipelines.Datamodel import XYRef |
| 14 | +from codeflare.pipelines.Runtime import ExecutionType |
| 15 | + |
| 16 | +class FeatureUnion(dm.AndTransform): |
| 17 | + def __init__(self): |
| 18 | + pass |
| 19 | + |
| 20 | + def transform(self, xy_list): |
| 21 | + X_list = [] |
| 22 | + y_list = [] |
| 23 | + |
| 24 | + for xy in xy_list: |
| 25 | + X_list.append(xy.get_x()) |
| 26 | + X_concat = np.concatenate(X_list, axis=0) |
| 27 | + |
| 28 | + return Xy(X_concat, None) |
| 29 | + |
| 30 | +def test_multibranch(): |
| 31 | + |
| 32 | + ray.shutdown() |
| 33 | + ray.init() |
| 34 | + |
| 35 | + ## prepare the data |
| 36 | + X = pd.DataFrame(np.random.randint(0,100,size=(10000, 4)), columns=list('ABCD')) |
| 37 | + y = pd.DataFrame(np.random.randint(0,2,size=(10000, 1)), columns=['Label']) |
| 38 | + |
| 39 | + numeric_features = X.select_dtypes(include=['int64']).columns |
| 40 | + numeric_transformer = Pipeline(steps=[ |
| 41 | + ('scaler', StandardScaler())]) |
| 42 | + |
| 43 | + ## set up preprocessor as StandardScaler |
| 44 | + preprocessor = ColumnTransformer( |
| 45 | + transformers=[ |
| 46 | + ('num', numeric_transformer, numeric_features), |
| 47 | + ]) |
| 48 | + |
| 49 | + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) |
| 50 | + |
| 51 | + X_ref = ray.put(X_train) |
| 52 | + y_ref = ray.put(y_train) |
| 53 | + |
| 54 | + Xy_ref = XYRef(X_ref, y_ref) |
| 55 | + Xy_ref_ptr = ray.put(Xy_ref) |
| 56 | + Xy_ref_ptrs = [Xy_ref_ptr] |
| 57 | + |
| 58 | + ## create two decision tree classifiers with different depth limit |
| 59 | + c_a = DecisionTreeClassifier(max_depth=3) |
| 60 | + c_b = DecisionTreeClassifier(max_depth=5) |
| 61 | + |
| 62 | + ## initialize codeflare pipeline by first creating the nodes |
| 63 | + pipeline = dm.Pipeline() |
| 64 | + node_a = dm.EstimatorNode('preprocess', preprocessor) |
| 65 | + node_b = dm.EstimatorNode('c_a', c_a) |
| 66 | + node_c = dm.EstimatorNode('c_b', c_b) |
| 67 | + |
| 68 | + node_d = dm.EstimatorNode('d', MinMaxScaler()) |
| 69 | + node_e = dm.EstimatorNode('e', StandardScaler()) |
| 70 | + node_f = dm.AndNode('f', FeatureUnion()) |
| 71 | + |
| 72 | + ## codeflare nodes are then connected by edges |
| 73 | + pipeline.add_edge(node_a, node_b) |
| 74 | + pipeline.add_edge(node_a, node_c) |
| 75 | + |
| 76 | + pipeline.add_edge(node_a, node_d) |
| 77 | + pipeline.add_edge(node_d, node_e) |
| 78 | + pipeline.add_edge(node_d, node_f) |
| 79 | + |
| 80 | + in_args={node_a: Xy_ref_ptrs} |
| 81 | + ## execute the codeflare pipeline |
| 82 | + out_args = rt.execute_pipeline(pipeline, ExecutionType.FIT, in_args) |
| 83 | + assert out_args |
| 84 | + |
| 85 | + ## retrieve node b |
| 86 | + node_b_out_args = ray.get(out_args[node_b]) |
| 87 | + b_out_xyref = node_b_out_args[0] |
| 88 | + ray.get(b_out_xyref.get_Xref()) |
| 89 | + b_out_node = ray.get(b_out_xyref.get_currnoderef()) |
| 90 | + sct_b = b_out_node.get_estimator() |
| 91 | + assert sct_b |
| 92 | + print(sct_b.feature_importances_) |
| 93 | + |
| 94 | + ## retrieve node f |
| 95 | + out_Xyrefs_f = ray.get(out_args[node_f]) |
| 96 | + assert out_Xyrefs_f |
| 97 | + |
| 98 | + ray.shutdown() |
| 99 | + |
| 100 | + |
| 101 | +if __name__ == "__main__": |
| 102 | + sys.exit(pytest.main(["-v", __file__])) |
0 commit comments