Skip to content

Commit 56c5f5c

Browse files
committed
Changed the timestamp calls for the documentation
1 parent bc8ef28 commit 56c5f5c

File tree

9 files changed

+9
-9
lines changed

9 files changed

+9
-9
lines changed

docs/examples/clipping/clipping.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
data['label'] = data['label'].astype(bool)
3636
# This is the known frequency of the time series. You may need to infer
3737
# the frequency or set the frequency with your AC power time series.
38-
freq = "15T"
38+
freq = "15min"
3939

4040
data['value_normalized'].plot()
4141
data.loc[data['label'], 'value_normalized'].plot(ls='', marker='o')

docs/examples/day-night-masking/day-night-masking.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@
3636

3737
# This is the known frequency of the time series. You may need to infer
3838
# the frequency or set the frequency with your AC power time series.
39-
freq = "1T"
39+
freq = "1min"
4040
# These are the latitude-longitude coordinates associated with the
4141
# SERF East system.
4242
latitude = 39.742

docs/examples/gaps/data-completeness.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
3535
file = pvanalytics_dir / 'data' / 'ac_power_inv_2173.csv'
3636
data = pd.read_csv(file, index_col=0, parse_dates=True)
37-
data = data.asfreq("15T")
37+
data = data.asfreq("15min")
3838

3939
# %%
4040
# Now, we use :py:func:`pvanalytics.quality.gaps.completeness_score` to get the

docs/examples/gaps/stale-data.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
3535
file = pvanalytics_dir / 'data' / 'ac_power_inv_2173_stale_data.csv'
3636
data = pd.read_csv(file, index_col=0, parse_dates=True)
37-
data = data.asfreq("15T")
37+
data = data.asfreq("15min")
3838
data['value_normalized'].plot()
3939
data.loc[data["stale_data_mask"], "value_normalized"].plot(ls='', marker='.')
4040
plt.legend(labels=["AC Power", "Inserted Stale Data"])

docs/examples/irradiance-quality/clearsky-limits-irradiance.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@
2929
pvanalytics_dir = pathlib.Path(pvanalytics.__file__).parent
3030
rmis_file = pvanalytics_dir / 'data' / 'irradiance_RMIS_NREL.csv'
3131
data = pd.read_csv(rmis_file, index_col=0, parse_dates=True)
32-
freq = '5T'
32+
freq = '5min'
3333
# Make the datetime index tz-aware.
3434
data.index = data.index.tz_localize("Etc/GMT+7")
3535

docs/examples/metrics/variability-index.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@
5252
# an hourly frequency.
5353
variability_index_series = variability_index(data['irradiance_ghi__7981'],
5454
clearsky['ghi'],
55-
freq='1H')
55+
freq='1h')
5656

5757
# %%
5858
# Plot the calculated VI against the underlying GHI measurements, for the

docs/examples/system/infer-orientation-fit-pvwatts.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@
3232
data = pd.read_csv(ac_power_file, index_col=0, parse_dates=True)
3333
data = data.sort_index()
3434
time_series = data['ac_power']
35-
time_series = time_series.asfreq('15T')
35+
time_series = time_series.asfreq('15min')
3636

3737
# Plot the first few days of the time series to visualize it
3838
time_series[:pd.to_datetime("2016-07-06 00:00:00-07:00")].plot()

docs/examples/system/system-tracking.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@
3636
data = pd.read_csv(ac_power_file, index_col=0, parse_dates=True)
3737
data = data.sort_index()
3838
time_series = data['ac_power']
39-
time_series = time_series.asfreq('15T')
39+
time_series = time_series.asfreq('15min')
4040

4141
# Plot the first few days of the time series to visualize it
4242
time_series[:pd.to_datetime("2016-07-06 00:00:00-07:00")].plot()

docs/examples/weather/module-temperature-check.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@
6161
# We mask the irradiance time series into day-night periods, and remove
6262
# any nighttime data to clean up the future regression.
6363
predicted_day_night_mask = power_or_irradiance(
64-
series=data['poa_irradiance__771'], freq='15T')
64+
series=data['poa_irradiance__771'], freq='15min')
6565
# Filter out nighttime periods
6666
data = data[predicted_day_night_mask]
6767

0 commit comments

Comments
 (0)