@@ -691,7 +691,7 @@ def run_profiling(self, n=1000, score=None, obj_n_mc=300, **kwargs):
691691 n = n , score = score , obj_n_mc = obj_n_mc , ** kwargs )
692692
693693
694- class NF (Inference ):
694+ class NFVI (Inference ):
695695 R"""
696696 Normalizing flow is a series of invertible transformations on initial distribution.
697697
@@ -753,7 +753,7 @@ def __init__(self, flow='planar*3',
753753 local_rv = None , model = None ,
754754 scale_cost_to_minibatch = False ,
755755 random_seed = None , start = None , jitter = .1 ):
756- super (NF , self ).__init__ (
756+ super (NFVI , self ).__init__ (
757757 self .OP , self .APPROX , self .TF ,
758758 flow = flow ,
759759 local_rv = local_rv , model = model ,
@@ -772,7 +772,7 @@ def from_flow(cls, flow):
772772
773773 Returns
774774 -------
775- :class:`NF `
775+ :class:`NFVI `
776776 """
777777 inference = object .__new__ (cls )
778778 Inference .__init__ (inference , KL , flow , None )
@@ -800,10 +800,10 @@ def fit(n=10000, local_rv=None, method='advi', model=None,
800800 - 'advi->fullrank_advi' for fitting ADVI first and then FullRankADVI
801801 - 'svgd' for Stein Variational Gradient Descent
802802 - 'asvgd' for Amortized Stein Variational Gradient Descent
803- - 'nf ' for Normalizing Flow
804- - 'nf =formula' for Normalizing Flow using formula
803+ - 'nfvi ' for Normalizing Flow
804+ - 'nfvi =formula' for Normalizing Flow using formula
805805
806- model : :class:`pymc3. Model`
806+ model : :class:`Model`
807807 PyMC3 model for inference
808808 random_seed : None or int
809809 leave None to use package global RandomStream or other
@@ -833,7 +833,7 @@ def fit(n=10000, local_rv=None, method='advi', model=None,
833833 fullrank_advi = FullRankADVI ,
834834 svgd = SVGD ,
835835 asvgd = ASVGD ,
836- nf = NF
836+ nfvi = NFVI
837837 )
838838 if isinstance (method , str ):
839839 method = method .lower ()
@@ -853,9 +853,9 @@ def fit(n=10000, local_rv=None, method='advi', model=None,
853853 inference = FullRankADVI .from_advi (inference )
854854 logger .info ('fitting fullrank advi ...' )
855855 return inference .fit (n2 , ** kwargs )
856- elif method .startswith ('nf =' ):
856+ elif method .startswith ('nfvi =' ):
857857 formula = method [3 :]
858- inference = NF (
858+ inference = NFVI (
859859 formula ,
860860 local_rv = local_rv ,
861861 model = model ,
0 commit comments