Skip to content

pythoninthegrass/pandas_meetup

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pandas_meetup

Meetup Photo

Summary

Pandas 101 with a smattering of DevOps and TUI

Table of Contents

Setup

Usage

Poetry

  • Install requirements via Poetry:
    poetry install
    poetry run ipython kernel install --name "python3.10.7" --user
  • Run Jupyter Lab
    poetry shell
    jupyter lab --ip=0.0.0.0 --port=8888 --no-browser
  • Quit the server via ctrl-c in the terminal
  • Enter deactivate to exit the Poetry virtual environment

Docker

  • Customize the .env.example and rename to .env
  • General commands
    # build image locally
    docker-compose build --pull --no-cache
    
    # start container
    docker-compose up -d
    
    # stop container
    docker-compose stop
    
    # remove container and network
    docker-compose down
  • justfile syntax (recommended)
    # help
    just
    
    # build image locally (no-cache)
    just build-clean
    
    # build image locally
    just build
    
    # start container
    just start
    
    # ssh
    just exec
    
    # stop container
    just stop
    
    # stop container, remove container and network
    just down

Both

  • Open a browser and navigate to http://127.0.0.1:8888
    • Docker uses the token specified in .env
  • Select the python3.10.7 kernel if asked
  • Open demo_pandas.ipynb from the left-hand column
  • Run cells by selecting them and pressing shift-enter

TODO

  • Polish. Probably.
  • Fix bonus code (audience participation??)

Further Reading

Original Repo

Starting JupyterLab

Dockerizing Jupyter Projects

The Spotify Hit Predictor Dataset (1960-2019)

Jupyter Docker Stacks — Docker Stacks documentation

Using Pandas and Python to Explore Your Dataset – Real Python

pandas GroupBy: Your Guide to Grouping Data in Python – Real Python

SQL Versions of the Most Frequently Used Pandas Functions | Towards Data Science

About

Combines Pandas, Docker, Jupyter, and Typer for a nice package

Topics

Resources

Stars

Watchers

Forks

Sponsor this project