Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions mnist/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,16 +35,20 @@ def forward(self, x):

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
# Get the correct number of samples for logging.
# Use len(train_loader.sampler) if a sampler is provided (e.g., SubsetRandomSampler),
# otherwise, use the full dataset length.
data_len = len(train_loader.sampler) if train_loader.sampler is not None else len(train_loader.dataset)
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss = F.nll_loss(output, target,reduction='mean') # get batch average loss
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
epoch, batch_idx * len(data), data_len,
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break
Expand All @@ -54,6 +58,7 @@ def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
data_len = len(test_loader.sampler) if test_loader.sampler is not None else len(test_loader.dataset)
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
Expand All @@ -62,11 +67,11 @@ def test(model, device, test_loader):
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
test_loss /= data_len # get average loss in test_set

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
test_loss, correct, data_len,
100. * correct / data_len))


def main():
Expand Down