Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 2 additions & 50 deletions backends/arm/_passes/decompose_div_tensor_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,6 @@
"full": exir_ops.edge.aten.full.default,
"lt": exir_ops.edge.aten.lt.Tensor,
"where": exir_ops.edge.aten.where.self,
"mul": exir_ops.edge.aten.mul.Tensor,
"sub": exir_ops.edge.aten.sub.Tensor,
}

aten_unary = {
Expand All @@ -33,8 +31,6 @@
"full": torch.ops.aten.full.default,
"lt": torch.ops.aten.lt.Tensor,
"where": torch.ops.aten.where.self,
"mul": torch.ops.aten.mul.Tensor,
"sub": torch.ops.aten.sub.Tensor,
}


Expand Down Expand Up @@ -74,57 +70,13 @@ def call_operator(self, op, args, kwargs, meta):
return q

if rounding_mode == "floor":
q_raw = q

# trunc(q_raw) = where(q_raw < 0, ceil(q_raw), floor(q_raw))
q_floor = super().call_operator(opset["floor"], (q_raw,), {}, meta)
q_ceil = super().call_operator(opset["ceil"], (q_raw,), {}, meta)

# a zero tensor with the right shape
out_shape = (1,) * len(meta["val"].size())
zero = super().call_operator(
opset["full"],
args=(out_shape, 0.0),
kwargs={},
meta=meta,
)

is_neg = super().call_operator(opset["lt"], (q_raw, zero), {}, meta)
q_trunc = super().call_operator(
opset["where"], (is_neg, q_ceil, q_floor), {}, meta
)

# r = a - q_trunc * b (true remainder under truncation)
q_times_b = super().call_operator(opset["mul"], (q_trunc, b), {}, meta)
r = super().call_operator(opset["sub"], (a, q_times_b), {}, meta)

# Decide if we need to subtract 1:
# for b > 0, adjust if r < 0; for b < 0, adjust if r > 0.
b_pos = super().call_operator(opset["lt"], (zero, b), {}, meta) # b > 0
r_lt0 = super().call_operator(opset["lt"], (r, zero), {}, meta) # r < 0
r_gt0 = super().call_operator(opset["lt"], (zero, r), {}, meta) # r > 0

adjust_if = super().call_operator(
opset["where"], (b_pos, r_lt0, r_gt0), {}, meta
)

one = super().call_operator(
opset["full"],
args=(out_shape, 1.0),
kwargs={},
meta=meta,
)
q_minus_1 = super().call_operator(opset["sub"], (q_trunc, one), {}, meta)

return super().call_operator(
opset["where"], (adjust_if, q_minus_1, q_trunc), {}, meta
)
return super().call_operator(opset["floor"], (q,), {}, meta)

if rounding_mode == "trunc":
zero = super().call_operator(
opset["full"],
args=((1,) * len(meta["val"].size()), 0.0),
kwargs={},
kwargs={"dtype": torch.float32},
meta=meta,
)
lt0 = self.call_operator(opset["lt"], (q, zero), {}, meta)
Expand Down
26 changes: 2 additions & 24 deletions backends/arm/test/ops/test_div_tensor_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,6 @@ def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.div(x, y, rounding_mode=self.mode)


def _rank4_large_randn_case():
torch.manual_seed(0)
x = 200 * torch.randn(5, 10, 25, 20) + 1
torch.manual_seed(1)
y = torch.rand(5, 10, 25, 20) + 1
return x, y


test_data = {
"mode_none": lambda: (None, (torch.randn(4, 8), torch.randn(4, 8).abs() + 1e-3)),
"mode_floor": lambda: (
Expand All @@ -55,13 +47,6 @@ def _rank4_large_randn_case():
(torch.randn(4, 8), torch.randn(4, 8).abs() + 1e-3),
),
"int_denominator": lambda: (None, (torch.randn(4, 8), 2)),
"op_floor_div_rank4_large_randn": lambda: (
"floor",
(
200 * torch.randn(5, 10, 25, 20) + 1,
torch.rand(5, 10, 25, 20) + 1,
),
),
}


Expand Down Expand Up @@ -99,13 +84,7 @@ def test_div_tensor_mode_tosa_INT(data):

@common.XfailIfNoCorstone300
@common.parametrize(
"data",
test_data,
xfails={
"mode_trunc": "CPU op missing in unittests",
"mode_floor": "Not supported",
"op_floor_div_rank4_large_randn": "Not supported",
},
"data", test_data, xfails={"mode_trunc": "CPU op missing in unittests"}
)
def test_div_tensor_mode_u55_INT(data):
mode, inputs = data()
Expand All @@ -115,10 +94,9 @@ def test_div_tensor_mode_u55_INT(data):
model,
inputs,
aten_ops=model.aten_ops_int,
exir_ops=[],
use_to_edge_transform_and_lower=True,
)
pipeline.pop_stage("check_not.exir")
pipeline.pop_stage("check_count.exir")
pipeline.run()


Expand Down
Loading