Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 64 additions & 10 deletions examples/qualcomm/scripts/torchvision_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,14 @@
import json
import logging
import os
from contextlib import contextmanager

from multiprocessing.connection import Client

import numpy as np

import torch
import torch.nn.functional as F
from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype
from executorch.examples.models.torchvision_vit.model import TorchVisionViTModel
from executorch.examples.qualcomm.utils import (
Expand All @@ -25,6 +27,56 @@
)


# Copied from torch/nn/functional.py
# QNN does not have 5D permute optimization. Fuse to a single 4D optimization
# Changed unsqueeze(0).transpose(0, -2).squeeze(-2) to permute(2, 0, 1, 3)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It can be a pass ideally, is it correct?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes. This can be a pass. If this pattern occurs frequently in the future, we will see if there's a better way to do this.

def _in_projection_packed_custom(q, k, v, w, b=None) -> list[torch.Tensor]:
from torch.nn.functional import linear

E = q.size(-1)
if k is v:
if q is k:
# self-attention
proj = linear(q, w, b)
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
proj = proj.unflatten(-1, (3, E)).permute(2, 0, 1, 3).contiguous()
# pyrefly: ignore # bad-return
return proj[0], proj[1], proj[2]
else:
# encoder-decoder attention
w_q, w_kv = w.split([E, E * 2])
if b is None:
b_q = b_kv = None
else:
b_q, b_kv = b.split([E, E * 2])
q_proj = linear(q, w_q, b_q)
kv_proj = linear(k, w_kv, b_kv)
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
kv_proj = kv_proj.unflatten(-1, (2, E)).permute(2, 0, 1, 3).contiguous()
# pyrefly: ignore # bad-return
return (q_proj, kv_proj[0], kv_proj[1])
else:
w_q, w_k, w_v = w.chunk(3)
if b is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = b.chunk(3)
# pyrefly: ignore # bad-return
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)


# Context manager to patch temporarily, so it won't affect other users using F._in_projection_packed
@contextmanager
def PermuteInProjectionPacked():
# Save the original function so it can be restored later
_original_in_projection_packed = F._in_projection_packed
F._in_projection_packed = _in_projection_packed_custom
try:
yield
finally:
F._in_projection_packed = _original_in_projection_packed


def main(args):
# ensure the working directory exist.
os.makedirs(args.artifact, exist_ok=True)
Expand All @@ -44,16 +96,18 @@ def main(args):
)

pte_filename = "vit_qnn_q8"
instance = TorchVisionViTModel()
build_executorch_binary(
instance.get_eager_model().eval(),
instance.get_example_inputs(),
args.model,
f"{args.artifact}/{pte_filename}",
inputs,
quant_dtype=QuantDtype.use_8a8w,
shared_buffer=args.shared_buffer,
)
instance = TorchVisionViTModel().get_eager_model().eval()

with PermuteInProjectionPacked():
build_executorch_binary(
instance,
inputs[0],
args.model,
f"{args.artifact}/{pte_filename}",
inputs,
quant_dtype=QuantDtype.use_8a8w,
shared_buffer=args.shared_buffer,
)

if args.compile_only:
return
Expand Down
Loading