-
Notifications
You must be signed in to change notification settings - Fork 25.6k
Closed
Labels
oncall: distributedAdd this issue/PR to distributed oncall triage queueAdd this issue/PR to distributed oncall triage queue
Description
🐛 Describe the bug
get_symm_mem_workspace
throws an OOM error when it is passed to 2GB or a larger value as the size of the workspace. Here is the repro:
import torch
import torch.distributed as dist
from torch.distributed._symmetric_memory import enable_symm_mem_for_group, get_symm_mem_workspace
dist.init_process_group(backend='nccl')
rank = dist.get_rank()
torch.cuda.set_device(rank)
group_name = dist.group.WORLD.group_name
enable_symm_mem_for_group(group_name)
symm_mem = get_symm_mem_workspace(
group_name,
2*1024*1024*1024 # error
# 2*1024*1024*1024 - 1 # works
)
Output:
$ torchrun test_symmem.py
[rank0]: Traceback (most recent call last):
[rank0]: File "/home/mtanaka/work/z3n/run_z3_graph_rewrite/test_symmem.py", line 13, in <module>
[rank0]: symm_mem = get_symm_mem_workspace(
[rank0]: File "/home/mtanaka/.local/lib/python3.10/site-packages/torch/distributed/_symmetric_memory/__init__.py", line 115, in get_symm_mem_workspace
[rank0]: tensor = _SymmetricMemory.empty_strided_p2p(
[rank0]: RuntimeError: CUDA driver error: out of memory
Versions
Collecting environment information...
PyTorch version: 2.5.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.35
Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-1073-azure-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.6.20
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 NVL
GPU 1: NVIDIA H100 NVL
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9V84 96-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 1
Core(s) per socket: 80
Socket(s): 1
Stepping: 1
BogoMIPS: 4800.06
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr rdpru arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 2.5 MiB (80 instances)
L1i cache: 2.5 MiB (80 instances)
L2 cache: 80 MiB (80 instances)
L3 cache: 320 MiB (10 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-39
NUMA node1 CPU(s): 40-79
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.24.4
[pip3] onnx==1.16.0
[pip3] optree==0.12.1
[pip3] pytorch-lightning==2.4.0
[pip3] pytorch-triton==3.1.0
[pip3] torch==2.5.0+cu124
[pip3] torch-tb-profiler==0.4.3
[pip3] torch_tensorrt==2.5.0a0
[pip3] torchaudio==2.5.0+cu124
[pip3] torchmetrics==1.4.2
[pip3] torchvision==0.20.0+cu124
[conda] Could not collect
cc @XilunWu @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
yifuwang
Metadata
Metadata
Assignees
Labels
oncall: distributedAdd this issue/PR to distributed oncall triage queueAdd this issue/PR to distributed oncall triage queue