Skip to content

[JIT] Batch op. batch_sum return a mask which is on cpu #15342

@Strasser-Pablo

Description

@Strasser-Pablo

🐛 Bug

To Reproduce

Steps to reproduce the behavior:

  1. Create a computation graph with a sum operation and another operation which is on gpu.
TensorIterator expected type CUDAByteType but got CPUByteType (check_type_conversions at ../aten/src/ATen/native/TensorIterator.cpp:547)
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x6a (0x7f860917d8fa in /usr/local/lib/python3.5/dist-packages/torch/lib/libc10.so)
frame #1: at::TensorIterator::check_type_conversions() + 0x24d (0x7f8668082b2d in /usr/local/lib/python3.5/dist-packages/torch/lib/libcaffe2.so)
frame #2: at::TensorIterator::Builder::build() + 0x2ef (0x7f8668087d3f in /usr/local/lib/python3.5/dist-packages/torch/lib/libcaffe2.so)
frame #3: at::TensorIterator::binary_op(at::Tensor&, at::Tensor const&, at::Tensor const&) + 0x309 (0x7f8668089589 in /usr/local/lib/python3.5/dist-packages/torch/lib/libcaffe2.so)
frame #4: at::native::mul_out(at::Tensor&, at::Tensor const&, at::Tensor const&) + 0x95 (0x7f8667f284e5 in /usr/local/lib/python3.5/dist-packages/torch/lib/libcaffe2.so)
frame #5: at::native::mul(at::Tensor const&, at::Tensor const&) + 0x43 (0x7f8667f29553 in /usr/local/lib/python3.5/dist-packages/torch/lib/libcaffe2.so)
frame #6: at::TypeDefault::mul(at::Tensor const&, at::Tensor const&) const + 0x4d (0x7f86682a601d in /usr/local/lib/python3.5/dist-packages/torch/lib/libcaffe2.so)
frame #7: torch::autograd::VariableType::mul(at::Tensor const&, at::Tensor const&) const + 0x302 (0x7f8609808842 in /usr/local/lib/python3.5/dist-packages/torch/lib/libtorch.so.1)
frame #8: <unknown function> + 0x54df7b (0x7f86098d3f7b in /usr/local/lib/python3.5/dist-packages/torch/lib/libtorch.so.1)
frame #9: <unknown function> + 0x5c0e43 (0x7f8609946e43 in /usr/local/lib/python3.5/dist-packages/torch/lib/libtorch.so.1)
frame #10: torch::jit::InterpreterState::run(std::vector<c10::IValue, std::allocator<c10::IValue> >&) + 0x31 (0x7f8609942651 in /usr/local/lib/python3.5/dist-packages/torch/lib/libtorch.so.1)
frame #11: torch::jit::GraphExecutor::run(std::vector<c10::IValue, std::allocator<c10::IValue> >&) + 0x1c4 (0x7f8609924a74 in /usr/local/lib/python3.5/dist-packages/torch/lib/libtorch.so.1)
frame #12: ./MainRandomizeRnnDistance() [0x47fd12]
frame #13: ./MainRandomizeRnnDistance() [0x45da0d]
frame #14: __libc_start_main + 0xf0 (0x7f85ffef3830 in /lib/x86_64-linux-gnu/libc.so.6)
frame #15: ./MainRandomizeRnnDistance() [0x459fe9]

Expected behavior

Having no problem.

Environment

Collecting environment information...
PyTorch version: 1.0.0a0+5510196
Is debug build: No
CUDA used to build PyTorch: 9.0.176

OS: Ubuntu 16.04.5 LTS
GCC version: (GCC) 8.2.0
CMake version: version 3.12.0

Python version: 3.5
Is CUDA available: Yes
CUDA runtime version: 9.0.176
GPU models and configuration: GPU 0: GeForce GTX 1070
Nvidia driver version: 410.78
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.7.3.1
/usr/lib/x86_64-linux-gnu/libcudnn_static_v7.a

Versions of relevant libraries:
[pip] Could not collect
[conda] Could not collect

Additional context

I think this can be solved by the following change

@torch.jit.script
def batch_sum(data, mask, dims):
    data = data * mask.type_as(data)
    for _ in range(dims.size(0)):
        data = data.sum(1)
    mask = torch.ones([data.size(0)], dtype=torch.uint8).type_as(mask)
    #mask = torch.ones([data.size(0)], dtype=torch.uint8)
    dims = dims[:0]  # empty tensor
    return data, mask, dims

Metadata

Metadata

Assignees

No one assigned

    Labels

    needs reproductionEnsure you have actionable steps to reproduce the issue. Someone else needs to confirm the repro.oncall: jitAdd this issue/PR to JIT oncall triage queue

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions