Skip to content

A bug in batchnorm double backward #2309

@yunjey

Description

@yunjey

I am working on adding batchnorm in the discriminator in WGAN-GP. However, I encountered a bug where gpu memory continues to increase when using batchnorm double backprop. This bug only occurs when using batchnorm. If i remove batchnorm from the model, the bug doesn't occur.

Here's the code you can experiment with.

import torch
import torch.nn as nn
from torch.autograd import Variable

# Model (partial discriminator)
D = nn.Sequential(
    nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
    nn.BatchNorm2d(64),   # if you remove this, the bug does not occur.
    nn.LeakyReLU(0.2))

D.cuda()


for i in range(1000):
    # Input 
    x = Variable(torch.randn(10, 3, 128, 128).cuda(), requires_grad=True)
    out = D(x)
    
    grad = torch.autograd.grad(outputs=out,
                               inputs=x,
                               grad_outputs=torch.ones(out.size()).cuda(),
                               retain_graph=True,
                               create_graph=True,
                               only_inputs=True)[0]
    
    grad_norm = grad.pow(2).sum().sqrt()
    loss = torch.mean((grad_norm - 1)**2)

    # Reset grad and backprop
    D.zero_grad()
    loss.backward()
    
    if (i+1) % 10 == 0:
        print (i+1)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions