-
Notifications
You must be signed in to change notification settings - Fork 25.6k
Description
🐛 Bug
I am using nn.ctc_loss and this is the error I get when I use torch.backends.cudnn.enabled = True.
If I disable the cuddn backends the error goes away.
File "train.py", line 293, in
asr_loss = torch.mean(models['predictor'][1](asr_out.contiguous().log_softmax(2).float(), targets, asr_out_sizes.cpu(), target_sizes)) # average the loss by minibatch
File "/home/hemant/.conda/envs/deep/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/hemant/.conda/envs/deep/lib/python3.8/site-packages/torch/nn/modules/loss.py", line 1501, in forward
return F.ctc_loss(log_probs, targets, input_lengths, target_lengths, self.blank, self.reduction,
File "/home/hemant/.conda/envs/deep/lib/python3.8/site-packages/torch/nn/functional.py", line 2200, in ctc_loss
return torch.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction),
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-contiguous input.
Environment info produced using: https://github.com/pytorch/pytorch/blob/master/torch/utils/collect_env.py
Collecting environment information...
PyTorch version: 1.7.1
Is debug build: False
CUDA used to build PyTorch: 11.0
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.4 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: Could not collect
CMake version: version 3.10.2
Python version: 3.8 (64-bit runtime)
Is CUDA available: True
CUDA runtime version: 11.0.221
GPU models and configuration:
GPU 0: GeForce RTX 3090
GPU 1: GeForce RTX 2080 Ti
GPU 2: GeForce RTX 2080 Ti
GPU 3: GeForce GTX 1080 Ti
GPU 4: GeForce RTX 2080 Ti
GPU 5: GeForce RTX 2080 Ti
GPU 6: GeForce RTX 2080 Ti
GPU 7: GeForce RTX 3090
Nvidia driver version: 460.32.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
/usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
HIP runtime version: N/A
MIOpen runtime version: N/A
Versions of relevant libraries:
[pip3] numpy==1.19.2
[pip3] torch==1.7.1
[pip3] torchaudio==0.7.0a0+a853dff
[pip3] torchfile==0.1.0
[pip3] torchvision==0.8.2
[conda] blas 1.0 mkl
[conda] cudatoolkit 11.0.221 h6bb024c_0
[conda] mkl 2020.2 256
[conda] mkl-service 2.3.0 py38he904b0f_0
[conda] mkl_fft 1.3.0 py38h54f3939_0
[conda] mkl_random 1.1.1 py38h0573a6f_0
[conda] numpy 1.19.2 py38h54aff64_0
[conda] numpy-base 1.19.2 py38hfa32c7d_0
[conda] pytorch 1.7.1 py3.8_cuda11.0.221_cudnn8.0.5_0 pytorch
[conda] torchaudio 0.7.2 py38 pytorch
[conda] torchfile 0.1.0 pypi_0 pypi
[conda] torchvision 0.8.2 py38_cu110 pytorch