Skip to content

Conversation

Copy link

pytorch-bot bot commented May 21, 2024

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/126821

Note: Links to docs will display an error until the docs builds have been completed.

✅ You can merge normally! (6 Unrelated Failures)

As of commit 9416ec7 with merge base 7fdfb88 (image):

BROKEN TRUNK - The following job failed but were present on the merge base:

👉 Rebase onto the `viable/strict` branch to avoid these failures

UNSTABLE - The following jobs failed but were likely due to flakiness present on trunk and has been marked as unstable:

This comment was automatically generated by Dr. CI and updates every 15 minutes.

@mlazos mlazos requested a review from eellison May 23, 2024 05:16
@mlazos mlazos added the topic: not user facing topic category label May 29, 2024
cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx peterbell10 ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang

[ghstack-poisoned]
cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx peterbell10 ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang

[ghstack-poisoned]
pytorchmergebot pushed a commit that referenced this pull request Jun 6, 2024
### Introduction/Problem

Today when dynamo traces a builtin nn module (nn.Linear for example) it will specially handle parameters of that module by storing them as constant attributes of the graph. This requires that dynamo guard on the ID of the NNModule because if the instance of the module changes, we need to retrace and recollect the new parameters as attributes of the graph. This creates a 1:1 compiled graph to cudagraph relationship.

With hierarchical compilation, dynamo will treat builtin nn modules like any other code. This reduces complexity and critically, if there are multiple identical layers in a model, we only need to compile one of those layers once, and reuse the same compiled artifact for each layer. This introduces a problem for the current approach to parameter handling. Since the parameters could now possibly change across calls to the compiled artifact, these need to be inputs to the graph instead of attributes. This introduces a problem for cudagraphs - previously cudagraphs was guaranteed that the parameters of builtin NN Modules would be constant across calls, but now since the compiled artifact needs to be agnostic to the actual instance of the NN module being used these parameter memory locations may vary. Previously cudagraphs simply copies varying inputs to cudagraph owned memory, but since the parameters are quite large, this is catastrophic for performance.

### Solution
To avoid this performance cliff, this PR allows cudagraphs to re-record a new cudagraph if only parameters change. Metadata about which arguments are parameters are propagated from AOT Autograd to compile_fx, and these indices are passed to cudagraphs. If these memory locations change, a new graph is recorded vs previously where this would be an error (because this previously should not happen). This enables a 1:many compiled graph to cudagraph relationship. Across similar modules we will re-record cudagraphs and dispatch the correct graph if parameter pointers match when the cudagraph is executed.

### Next steps (if needed)
It is theoretically possible that a user passes Parameters that change frequently as inputs to model code - if this is a common issue this design allows for dynamo to pass metadata indicating which parameters were created in a builtin NN Module context to only permit those parameters to have the multi-cudagraph behavior, but this PR does not implement this.

Pull Request resolved: #126822
Approved by: https://github.com/eellison
ghstack dependencies: #126820, #126821
TharinduRusira pushed a commit to TharinduRusira/pytorch that referenced this pull request Jun 14, 2024
TharinduRusira pushed a commit to TharinduRusira/pytorch that referenced this pull request Jun 14, 2024
### Introduction/Problem

Today when dynamo traces a builtin nn module (nn.Linear for example) it will specially handle parameters of that module by storing them as constant attributes of the graph. This requires that dynamo guard on the ID of the NNModule because if the instance of the module changes, we need to retrace and recollect the new parameters as attributes of the graph. This creates a 1:1 compiled graph to cudagraph relationship.

With hierarchical compilation, dynamo will treat builtin nn modules like any other code. This reduces complexity and critically, if there are multiple identical layers in a model, we only need to compile one of those layers once, and reuse the same compiled artifact for each layer. This introduces a problem for the current approach to parameter handling. Since the parameters could now possibly change across calls to the compiled artifact, these need to be inputs to the graph instead of attributes. This introduces a problem for cudagraphs - previously cudagraphs was guaranteed that the parameters of builtin NN Modules would be constant across calls, but now since the compiled artifact needs to be agnostic to the actual instance of the NN module being used these parameter memory locations may vary. Previously cudagraphs simply copies varying inputs to cudagraph owned memory, but since the parameters are quite large, this is catastrophic for performance.

### Solution
To avoid this performance cliff, this PR allows cudagraphs to re-record a new cudagraph if only parameters change. Metadata about which arguments are parameters are propagated from AOT Autograd to compile_fx, and these indices are passed to cudagraphs. If these memory locations change, a new graph is recorded vs previously where this would be an error (because this previously should not happen). This enables a 1:many compiled graph to cudagraph relationship. Across similar modules we will re-record cudagraphs and dispatch the correct graph if parameter pointers match when the cudagraph is executed.

### Next steps (if needed)
It is theoretically possible that a user passes Parameters that change frequently as inputs to model code - if this is a common issue this design allows for dynamo to pass metadata indicating which parameters were created in a builtin NN Module context to only permit those parameters to have the multi-cudagraph behavior, but this PR does not implement this.

Pull Request resolved: pytorch#126822
Approved by: https://github.com/eellison
ghstack dependencies: pytorch#126820, pytorch#126821
@github-actions github-actions bot deleted the gh/mlazos/44/head branch July 7, 2024 02:00
desai0007 pushed a commit to desai0007/test-repo-pytorch that referenced this pull request Feb 26, 2025
ghstack-source-id: 0df0c35
Pull Request resolved: pytorch/pytorch#126821
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants