Skip to content

Conversation

ydwu4
Copy link
Contributor

@ydwu4 ydwu4 commented Dec 9, 2024

Stack from ghstack (oldest at bottom):

For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

The alternative:

If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:

  • it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
  • changes to triton or the serialization logic for triton arguments can be BC breaking
  • exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

Future plans:

After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file on the same machine that users call export, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.

cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov

Copy link

pytorch-bot bot commented Dec 9, 2024

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/142426

Note: Links to docs will display an error until the docs builds have been completed.

❌ 8 New Failures

As of commit 450fab8 with merge base e56768f (image):

NEW FAILURES - The following jobs have failed:

This comment was automatically generated by Dr. CI and updates every 15 minutes.

)
from torch._subclasses.functional_tensor import PythonFunctionalizeAPI

if can_auto_functionalize(op):
Copy link
Contributor Author

@ydwu4 ydwu4 Dec 9, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This special implementation seems simpler but maybe it's better to just do mode.dispatch()?

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
ydwu4 added a commit that referenced this pull request Dec 10, 2024
@ydwu4 ydwu4 requested review from SherlockNoMad, bdhirsh and zou3519 and removed request for SherlockNoMad December 10, 2024 17:31
Comment on lines 155 to 171
if is_exporting():
from torch._higher_order_ops.auto_functionalize import (
can_auto_functionalize,
do_auto_functionalize,
)
from torch._subclasses.functional_tensor import PythonFunctionalizeAPI

if can_auto_functionalize(op):
return do_auto_functionalize(op, args, kwargs)

assert (
not op._schema.is_mutable
), "custom triton op need to be auto_functionalized if it's mutable"
ctx = PythonFunctionalizeAPI(mode, mode.pre_dispatch)
unwrapped_args, unwrapped_kwargs = ctx.unwrap_tensors((args, kwargs))
return ctx.wrap_tensors(op(*unwrapped_args, **unwrapped_kwargs))
else:
Copy link
Contributor

@zou3519 zou3519 Dec 12, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if is_exporting():
    return mode.__torch_dispatch__(op, types, args ,kwargs)

Copy link
Contributor Author

@ydwu4 ydwu4 Dec 13, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

updated, this works out of box.

For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
ydwu4 added a commit that referenced this pull request Dec 13, 2024
For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged once all checks pass (ETA 0-4 Hours).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

@huydhn
Copy link
Contributor

huydhn commented Dec 19, 2024

@pytorchbot revert -m 'This fails one internal MTIA test, checking with the author that we need to revert and reland this' -c ghfirst

@pytorchmergebot
Copy link
Collaborator

@pytorchbot successfully started a revert job. Check the current status here.
Questions? Feedback? Please reach out to the PyTorch DevX Team

pytorchmergebot added a commit that referenced this pull request Dec 19, 2024
…2426)"

This reverts commit 10b9c59.

Reverted #142426 on behalf of https://github.com/huydhn due to This fails one internal MTIA test, checking with the author that we need to revert and reland this ([comment](#142426 (comment)))
@pytorchmergebot
Copy link
Collaborator

@ydwu4 your PR has been successfully reverted.

@pytorchmergebot pytorchmergebot added Reverted ci-no-td Do not run TD on this PR labels Dec 19, 2024
For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
ydwu4 added a commit that referenced this pull request Jan 6, 2025
ydwu4 added a commit to ydwu4/pytorch that referenced this pull request Jan 10, 2025
…orch#144284)

Summary:

A reland of pytorch#142426.

Copying the description over here:

For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:

it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
changes to triton or the serialization logic for triton arguments can be BC breaking
exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file on the same machine that users call export, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.

Test Plan: see new tests.

Differential Revision: D67879685
@ydwu4
Copy link
Contributor Author

ydwu4 commented Jan 10, 2025

Close as replaced by #144284.

@ydwu4 ydwu4 closed this Jan 10, 2025
pytorchmergebot pushed a commit that referenced this pull request Jan 11, 2025
…4284)

Summary:
A reland of #142426.

Copying the description over here:

For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.

The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:

it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
changes to triton or the serialization logic for triton arguments can be BC breaking
exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.

Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file on the same machine that users call export, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.

In the long term, we may export multiple cubins for the triton op directly.

Test Plan: see new tests.

Differential Revision: D67879685

Pull Request resolved: #144284
Approved by: https://github.com/zou3519
@github-actions github-actions bot deleted the gh/ydwu4/189/head branch February 12, 2025 02:04
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

ci-no-td Do not run TD on this PR ciflow/inductor ciflow/trunk Trigger trunk jobs on your pull request Merged module: inductor Reverted topic: not user facing topic category

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants