Skip to content

Conversation

@woshizhpy
Copy link

Summary: Fix the difference in dper3 and dper2 when regressionLoss is used.

Test Plan:
test using dper2 model id f134632386
Comparison tool output before change:

FOUND OP DIFFERENT WITH DPER2!!!
OP is of type ExpandDims
OP inputs ['supervision:label']
OP outputs ['sparse_nn/regression_loss/mean_squared_error_loss/ExpandDims:0']
===============================
Finished all dper3 ops, number of good ops 11, bad ops 1, skipped 26
run_comparison for dper2 / dper3 nets running time: 0.0020143985748291016
result type: <class 'NoneType'> result: None

After change:

FOUND OP DIFFERENT WITH DPER2!!!
OP is of type ExpandDims
OP inputs ['sparse_nn_2/regression_loss_2/mean_squared_error_loss_8/Squeeze:0_grad']
OP outputs ['sparse_nn_2/over_arch_2/linear_2/FC_grad']
===============================
Finished all dper3 ops, number of good ops 19, bad ops 1, skipped 16
run_comparison for dper2 / dper3 nets running time: 0.0017991065979003906
result type: <class 'NoneType'> result: None

dper2 label part of net P111794577
dper3 label part of net after change P116817194

Reviewed By: kennyhorror

Differential Revision: D17795740

Summary: Fix the difference in dper3 and dper2 when regressionLoss is used.

Test Plan:
test using dper2 model id f134632386
Comparison tool output before change:
```
FOUND OP DIFFERENT WITH DPER2!!!
OP is of type ExpandDims
OP inputs ['supervision:label']
OP outputs ['sparse_nn/regression_loss/mean_squared_error_loss/ExpandDims:0']
===============================
Finished all dper3 ops, number of good ops 11, bad ops 1, skipped 26
run_comparison for dper2 / dper3 nets running time: 0.0020143985748291016
result type: <class 'NoneType'> result: None
```

After change:

```
FOUND OP DIFFERENT WITH DPER2!!!
OP is of type ExpandDims
OP inputs ['sparse_nn_2/regression_loss_2/mean_squared_error_loss_8/Squeeze:0_grad']
OP outputs ['sparse_nn_2/over_arch_2/linear_2/FC_grad']
===============================
Finished all dper3 ops, number of good ops 19, bad ops 1, skipped 16
run_comparison for dper2 / dper3 nets running time: 0.0017991065979003906
result type: <class 'NoneType'> result: None
```

dper2  label part of net P111794577
dper3  label part of net after change P116817194

Reviewed By: kennyhorror

Differential Revision: D17795740

fbshipit-source-id: 2cc20dcc1b785a0f87d56e36e4f6a3eaac340fd3
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D17795740

@facebook-github-bot
Copy link
Contributor

This pull request has been merged in 46fefc9.

thiagocrepaldi pushed a commit to thiagocrepaldi/pytorch that referenced this pull request Feb 4, 2020
Summary:
Pull Request resolved: pytorch#28265

Fix the difference in dper3 and dper2 when regressionLoss is used.

Test Plan:
test using dper2 model id f134632386
Comparison tool output before change:
```
FOUND OP DIFFERENT WITH DPER2!!!
OP is of type ExpandDims
OP inputs ['supervision:label']
OP outputs ['sparse_nn/regression_loss/mean_squared_error_loss/ExpandDims:0']
===============================
Finished all dper3 ops, number of good ops 11, bad ops 1, skipped 26
run_comparison for dper2 / dper3 nets running time: 0.0020143985748291016
result type: <class 'NoneType'> result: None
```

After change:

```
FOUND OP DIFFERENT WITH DPER2!!!
OP is of type ExpandDims
OP inputs ['sparse_nn_2/regression_loss_2/mean_squared_error_loss_8/Squeeze:0_grad']
OP outputs ['sparse_nn_2/over_arch_2/linear_2/FC_grad']
===============================
Finished all dper3 ops, number of good ops 19, bad ops 1, skipped 16
run_comparison for dper2 / dper3 nets running time: 0.0017991065979003906
result type: <class 'NoneType'> result: None
```

dper2  label part of net P111794577
dper3  label part of net after change P116817194

Reviewed By: kennyhorror

Differential Revision: D17795740

fbshipit-source-id: 9faf96f5140f5a1efdf2985820bda3ca400f61fa
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants