Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Summary:
This is the second diff in this stack. This diff includes the changes to DPER3; the first diff includes the changes to Caffe2.
We want to decay learning parameters properly. Previously this was not done when a parameter is absent from a minibatch. We fix this by keeping track of missed minibatches and making decay catch up accordingly.
The exponential moving averages (EMA) for the first and second moments used in Adam are updated only for parameters seen in a minibatch. Actually, for these parameters, 0 should be added to the EMAs and the EMAs should then be decayed by multiplying by beta1 and beta2 respectively.
To avoid the computational overhead of touching every parameter for every minibatch, we:
We hope this will significantly improve the inconsistent learning parameter issue we have seen with Adam.
Differential Revision: D29638897