Skip to content

Conversation

@zhuhaozhe
Copy link
Collaborator

@zhuhaozhe zhuhaozhe commented Dec 15, 2021

The oneAPI Deep Neural Network Library (previously known as Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) and Deep Neural Network Library (DNNL)) will only accept building or runtime flags which start with "DNNL_" from version v2.5.

This PR is a minimized PR to un-block oneDNN v2.5 building with PyTorch. We only solve building flag compatibility in this PR and keep the user flag like "USE_MKLDNN" "MKLDNN_CPU_RUNTIME" still working as before.

As to the compatibility of runtime flag MKLDNN_VERBOSE, we plan to solve it with an ideep update together with oneDNN v2.5 upgrade. The idea is to set "DNNL_VERBOSE" when ideep is loaded if "MKLDNN_VERBOSE" is set.

@pytorch-probot
Copy link

pytorch-probot bot commented Dec 15, 2021

CI Flow Status

⚛️ CI Flow

Ruleset - Version: v1
Ruleset - File: https://github.com/zhuhaozhe/pytorch/blob/cebed90af0a4990ec673c3fd6894a590189246cd/.github/generated-ciflow-ruleset.json
PR ciflow labels: ciflow/default

Workflows Labels (bold enabled) Status
Triggered Workflows
linux-bionic-py3.7-clang9 ciflow/all, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/noarch, ciflow/trunk ✅ triggered
linux-docs ciflow/all, ciflow/cpu, ciflow/default, ciflow/docs, ciflow/linux, ciflow/trunk ✅ triggered
linux-vulkan-bionic-py3.7-clang9 ciflow/all, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/trunk, ciflow/vulkan ✅ triggered
linux-xenial-cuda11.3-py3.7-gcc7 ciflow/all, ciflow/cuda, ciflow/default, ciflow/linux, ciflow/trunk ✅ triggered
linux-xenial-cuda11.3-py3.7-gcc7-bazel-test ciflow/all, ciflow/bazel, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/trunk ✅ triggered
linux-xenial-py3-clang5-mobile-build ciflow/all, ciflow/default, ciflow/linux, ciflow/mobile, ciflow/trunk ✅ triggered
linux-xenial-py3-clang5-mobile-custom-build-static ciflow/all, ciflow/default, ciflow/linux, ciflow/mobile, ciflow/trunk ✅ triggered
linux-xenial-py3.7-clang7-asan ciflow/all, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/sanitizers, ciflow/trunk ✅ triggered
linux-xenial-py3.7-clang7-onnx ciflow/all, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/onnx, ciflow/trunk ✅ triggered
linux-xenial-py3.7-gcc5.4 ciflow/all, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/trunk ✅ triggered
linux-xenial-py3.7-gcc7 ciflow/all, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/trunk ✅ triggered
linux-xenial-py3.7-gcc7-no-ops ciflow/all, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/trunk ✅ triggered
pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single ciflow/all, ciflow/android, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/trunk ✅ triggered
pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single-full-jit ciflow/all, ciflow/android, ciflow/cpu, ciflow/default, ciflow/linux, ciflow/trunk ✅ triggered
win-vs2019-cpu-py3 ciflow/all, ciflow/cpu, ciflow/default, ciflow/trunk, ciflow/win ✅ triggered
win-vs2019-cuda11.3-py3 ciflow/all, ciflow/cuda, ciflow/default, ciflow/trunk, ciflow/win ✅ triggered
Skipped Workflows
caffe2-linux-xenial-py3.7-gcc5.4 ciflow/all, ciflow/cpu, ciflow/linux, ciflow/trunk 🚫 skipped
docker-builds ciflow/all, ciflow/trunk 🚫 skipped
ios-12-5-1-arm64 ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
ios-12-5-1-arm64-coreml ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
ios-12-5-1-arm64-custom-ops ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
ios-12-5-1-arm64-full-jit ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
ios-12-5-1-arm64-metal ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
ios-12-5-1-x86-64 ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
ios-12-5-1-x86-64-coreml ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
ios-12-5-1-x86-64-full-jit ciflow/all, ciflow/ios, ciflow/macos, ciflow/trunk 🚫 skipped
libtorch-linux-xenial-cuda10.2-py3.7-gcc7 ciflow/all, ciflow/cuda, ciflow/libtorch, ciflow/linux, ciflow/trunk 🚫 skipped
libtorch-linux-xenial-cuda11.3-py3.7-gcc7 ciflow/all, ciflow/cuda, ciflow/libtorch, ciflow/linux, ciflow/trunk 🚫 skipped
linux-binary-conda ciflow/binaries, ciflow/binaries/conda 🚫 skipped
linux-binary-libtorch-cxx11-abi ciflow/binaries, ciflow/binaries/libtorch 🚫 skipped
linux-binary-libtorch-pre-cxx11 ciflow/binaries, ciflow/binaries/libtorch 🚫 skipped
linux-binary-manywheel ciflow/binaries, ciflow/binaries/wheel 🚫 skipped
linux-bionic-cuda10.2-py3.9-gcc7 ciflow/all, ciflow/cuda, ciflow/linux, ciflow/slow, ciflow/trunk 🚫 skipped
linux-docs-push ciflow/all, ciflow/cpu, ciflow/linux, ciflow/scheduled 🚫 skipped
linux-xenial-cuda11.3-py3.7-gcc7-no-ops ciflow/all, ciflow/cuda, ciflow/linux, ciflow/trunk 🚫 skipped
macos-10-15-py3-arm64 ciflow/all, ciflow/macos, ciflow/trunk 🚫 skipped
macos-10-15-py3-lite-interpreter-x86-64 ciflow/all, ciflow/macos, ciflow/trunk 🚫 skipped
macos-11-py3-x86-64 ciflow/all, ciflow/macos, ciflow/trunk 🚫 skipped
parallelnative-linux-xenial-py3.7-gcc5.4 ciflow/all, ciflow/cpu, ciflow/linux, ciflow/trunk 🚫 skipped
periodic-libtorch-linux-bionic-cuda11.5-py3.7-gcc7 ciflow/all, ciflow/cuda, ciflow/libtorch, ciflow/linux, ciflow/scheduled 🚫 skipped
periodic-libtorch-linux-xenial-cuda11.1-py3.7-gcc7 ciflow/all, ciflow/cuda, ciflow/libtorch, ciflow/linux, ciflow/scheduled 🚫 skipped
periodic-linux-bionic-cuda11.5-py3.7-gcc7 ciflow/all, ciflow/cuda, ciflow/linux, ciflow/scheduled 🚫 skipped
periodic-linux-xenial-cuda10.2-py3-gcc7-slow-gradcheck ciflow/all, ciflow/cuda, ciflow/linux, ciflow/scheduled, ciflow/slow, ciflow/slow-gradcheck 🚫 skipped
periodic-linux-xenial-cuda11.1-py3.7-gcc7-debug ciflow/all, ciflow/cuda, ciflow/linux, ciflow/scheduled 🚫 skipped
periodic-win-vs2019-cuda11.1-py3 ciflow/all, ciflow/cuda, ciflow/scheduled, ciflow/win 🚫 skipped
periodic-win-vs2019-cuda11.5-py3 ciflow/all, ciflow/cuda, ciflow/scheduled, ciflow/win 🚫 skipped
pytorch-linux-xenial-py3-clang5-android-ndk-r19c-build ciflow/all, ciflow/android, ciflow/cpu, ciflow/linux, ciflow/trunk 🚫 skipped

You can add a comment to the PR and tag @pytorchbot with the following commands:
# ciflow rerun, "ciflow/default" will always be added automatically
@pytorchbot ciflow rerun

# ciflow rerun with additional labels "-l <ciflow/label_name>", which is equivalent to adding these labels manually and trigger the rerun
@pytorchbot ciflow rerun -l ciflow/scheduled -l ciflow/slow

For more information, please take a look at the CI Flow Wiki.

@XiaobingSuper XiaobingSuper added the intel priority matters to intel architecture from performance wise label Dec 15, 2021
@zhuhaozhe zhuhaozhe changed the title fix MKLDNN<-> DNNL compatibility Building support for oneDNN v2.5. Dec 15, 2021
@jbschlosser jbschlosser added the triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module label Dec 15, 2021
@facebook-github-bot
Copy link
Contributor

facebook-github-bot commented Dec 16, 2021

🔗 Helpful links

💊 CI failures summary and remediations

As of commit 400d075 (more details on the Dr. CI page):


💚 💚 Looks good so far! There are no failures yet. 💚 💚


This comment was automatically generated by Dr. CI (expand for details).

Please report bugs/suggestions to the (internal) Dr. CI Users group.

Click here to manually regenerate this comment.

@jgong5
Copy link
Collaborator

jgong5 commented Jan 13, 2022

@VitalyFedyunin This is the PR for filling the compatibility gap of build with oneDNN v2.5. A separate PR (that depends on this PR) will be submitted with ideep/oneDNN upgrade to v2.5.

@yanbing-j
Copy link
Collaborator

This PR's commits have been included in #71546. It can be closed. @zhuhaozhe

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

cla signed intel priority matters to intel architecture from performance wise open source triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module

Projects

None yet

Development

Successfully merging this pull request may close these issues.

7 participants