Skip to content

fake commit #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 12 commits into from
Closed

fake commit #8

wants to merge 12 commits into from

Conversation

soumith
Copy link
Member

@soumith soumith commented Sep 3, 2016

No description provided.

@soumith
Copy link
Member Author

soumith commented Sep 3, 2016

@pytorchbot test this please

@soumith
Copy link
Member Author

soumith commented Sep 3, 2016

@pytorchbot retest this please

@soumith
Copy link
Member Author

soumith commented Sep 3, 2016

@pytorchbot retest this please

2 similar comments
@soumith
Copy link
Member Author

soumith commented Sep 3, 2016

@pytorchbot retest this please

@soumith
Copy link
Member Author

soumith commented Sep 3, 2016

@pytorchbot retest this please

@soumith
Copy link
Member Author

soumith commented Sep 3, 2016

Continuous builds now work for both Pull Requests and for pushes to Master.

Build server is Jenkins (EC2) + Nimbix.
https://build.pytorch.org

Build scripts are here: https://github.com/pytorch/builder

pytorchmergebot pushed a commit that referenced this pull request Nov 22, 2024
See #140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame #1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame #2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame #3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame #4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame #5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame #6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame #7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame #8: 0x0000000100fccbe4 Python`run_mod + 168
    frame #9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame #10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame #11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame #12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame #13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame #14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame #15: 0x0000000100ff1564 Python`pymain_main + 304
    frame #16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame #17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: #141296
Approved by: https://github.com/huydhn
youssef62 pushed a commit to youssef62/pytorch that referenced this pull request Nov 23, 2024
See pytorch#140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread pytorch#1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame pytorch#1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame pytorch#2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame pytorch#3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame pytorch#4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame pytorch#5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame pytorch#6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame pytorch#7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame pytorch#8: 0x0000000100fccbe4 Python`run_mod + 168
    frame pytorch#9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame pytorch#10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame pytorch#11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame pytorch#12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame pytorch#13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame pytorch#14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame pytorch#15: 0x0000000100ff1564 Python`pymain_main + 304
    frame pytorch#16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame pytorch#17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: pytorch#141296
Approved by: https://github.com/huydhn
gglin001 pushed a commit to gglin001/pytorch that referenced this pull request Nov 27, 2024
chunyuan-w pushed a commit to chunyuan-w/pytorch that referenced this pull request Dec 2, 2024
pobin6 pushed a commit to pobin6/pytorch that referenced this pull request Dec 5, 2024
See pytorch#140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame #1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame pytorch#2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame pytorch#3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame pytorch#4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame pytorch#5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame pytorch#6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame pytorch#7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame pytorch#8: 0x0000000100fccbe4 Python`run_mod + 168
    frame pytorch#9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame pytorch#10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame pytorch#11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame pytorch#12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame pytorch#13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame pytorch#14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame pytorch#15: 0x0000000100ff1564 Python`pymain_main + 304
    frame pytorch#16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame pytorch#17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: pytorch#141296
Approved by: https://github.com/huydhn
aostrowski-hbn added a commit to HabanaAI/pytorch-fork that referenced this pull request Jan 7, 2025
…#137…" (pytorch#8)

This reverts commit 882f853f4179975aa2e98aa64dffe8e3b282013a.

Co-authored-by: Adrian Ostrowski <81568391+aostrowski-hbn@users.noreply.github.com>
drisspg added a commit that referenced this pull request Jan 15, 2025
…ention"


Thanks to manman-ren who verified that triton-lang/triton#4247 fixes this issue as well. This is not currently cherry-picked into pytorch-triton.

========= COMPUTE-SANITIZER
Test completed successfully!
========= ERROR SUMMARY: 0 errors
## NOTE:
HMM very interestingly:
If the og_headdim is a odd this works as expected. However when the og_head_dim is a multiple of 2 this segfaults here:
```Shell
(lldb) bt
* thread #67, name = 'pt_autograd_0', stop reason = signal SIGSEGV: address not mapped to object (fault address: 0x10)
  * frame #0: 0x00007ffed327fbfe libtriton.so`scheduleRemainingToLastStage(forOp=ForOp @ 0x00007ffcafdfd658, schedule=0x00007ffcafdfd9e0, afterPrologue=<unavailable>, numStages=2) at MatmulLoopPipeline.cpp:893:9
    frame #1: 0x00007ffed328d970 libtriton.so`mlir::triton::preProcessLoopAndGetSchedule(forOp=0x00007ffcafdfddc0, numStages=2, options=0x00007ffcafdfde80) at MatmulLoopPipeline.cpp:1230:31
    frame #2: 0x00007ffed32a6a43 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation() [inlined] pipelineLoop(numStages=2, forOp=ForOp @ 0x00007ffcafdfddc0) at SoftwarePipeliner.cpp:79:47
    frame #3: 0x00007ffed32a6998 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation(this=0x00007ffc54767f10) at SoftwarePipeliner.cpp:125:36
    frame #4: 0x00007ffed385147c libtriton.so`mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) + 700
    frame #5: 0x00007ffed3851df2 libtriton.so`mlir::detail::OpToOpPassAdaptor::runPipeline(mlir::OpPassManager&, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int, mlir::PassInstrumentor*, mlir::PassInstrumentation::PipelineParentInfo const*) + 354
    frame #6: 0x00007ffed385481c libtriton.so`mlir::PassManager::run(mlir::Operation*) + 876
    frame #7: 0x00007ffed3542bad libtriton.so`<lambda(mlir::PassManager&, mlir::ModuleOp&)>::operator(self=<unavailable>, mod=0x00007ffc54579280, __closure=<unavailable>)(mlir::PassManager &, mlir::ModuleOp &) at ir.cc:1625:19
    frame #8: 0x00007ffed3560108 libtriton.so`_FUN [inlined] operator(this=0x0000000000000000, call=0x00007ffcafdfe6e0) at cast.h:1480:37
    frame #9: 0x00007ffed35600f0 libtriton.so`_FUN((null)=0x00007ffcafdfe6e0) at pybind11.h:224:21
    frame #10: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
    frame #11: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
```




cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
drisspg added a commit that referenced this pull request Jan 15, 2025
Thanks to manman-ren who verified that triton-lang/triton#4247 fixes this issue as well. This is not currently cherry-picked into pytorch-triton.

========= COMPUTE-SANITIZER
Test completed successfully!
========= ERROR SUMMARY: 0 errors
## NOTE:
HMM very interestingly:
If the og_headdim is a odd this works as expected. However when the og_head_dim is a multiple of 2 this segfaults here:
```Shell
(lldb) bt
* thread #67, name = 'pt_autograd_0', stop reason = signal SIGSEGV: address not mapped to object (fault address: 0x10)
  * frame #0: 0x00007ffed327fbfe libtriton.so`scheduleRemainingToLastStage(forOp=ForOp @ 0x00007ffcafdfd658, schedule=0x00007ffcafdfd9e0, afterPrologue=<unavailable>, numStages=2) at MatmulLoopPipeline.cpp:893:9
    frame #1: 0x00007ffed328d970 libtriton.so`mlir::triton::preProcessLoopAndGetSchedule(forOp=0x00007ffcafdfddc0, numStages=2, options=0x00007ffcafdfde80) at MatmulLoopPipeline.cpp:1230:31
    frame #2: 0x00007ffed32a6a43 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation() [inlined] pipelineLoop(numStages=2, forOp=ForOp @ 0x00007ffcafdfddc0) at SoftwarePipeliner.cpp:79:47
    frame #3: 0x00007ffed32a6998 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation(this=0x00007ffc54767f10) at SoftwarePipeliner.cpp:125:36
    frame #4: 0x00007ffed385147c libtriton.so`mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) + 700
    frame #5: 0x00007ffed3851df2 libtriton.so`mlir::detail::OpToOpPassAdaptor::runPipeline(mlir::OpPassManager&, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int, mlir::PassInstrumentor*, mlir::PassInstrumentation::PipelineParentInfo const*) + 354
    frame #6: 0x00007ffed385481c libtriton.so`mlir::PassManager::run(mlir::Operation*) + 876
    frame #7: 0x00007ffed3542bad libtriton.so`<lambda(mlir::PassManager&, mlir::ModuleOp&)>::operator(self=<unavailable>, mod=0x00007ffc54579280, __closure=<unavailable>)(mlir::PassManager &, mlir::ModuleOp &) at ir.cc:1625:19
    frame #8: 0x00007ffed3560108 libtriton.so`_FUN [inlined] operator(this=0x0000000000000000, call=0x00007ffcafdfe6e0) at cast.h:1480:37
    frame #9: 0x00007ffed35600f0 libtriton.so`_FUN((null)=0x00007ffcafdfe6e0) at pybind11.h:224:21
    frame #10: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
    frame #11: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
```




cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
pytorchmergebot pushed a commit that referenced this pull request Jun 1, 2025
Which inherits from `RuntimeError` and contains `error_code`, which in case of CUDA should contain error returned by `cudaGetLastError`

`torch::detail::_new_accelerator_error_object(c10::AcceleratorError&)` follows the pattern of CPython's  [`PyErr_SetString`](https://github.com/python/cpython/blob/cb8a72b301f47e76d93a7fe5b259e9a5758792e1/Python/errors.c#L282), namely
- Convert cstr into Python string with `PyUnicode_FromString`
- Create new exception object using `PyObject_CallOneArg` just like it's done in [`_PyErr_CreateException`](https://github.com/python/cpython/blob/cb8a72b301f47e76d93a7fe5b259e9a5758792e1/Python/errors.c#L32)
- Set `error_code` property using `PyObject_SetAttrString`
- decref all temporary references

Test that it works and captures CPP backtrace (in addition to CI) by running
```python
import os
os.environ['TORCH_SHOW_CPP_STACKTRACES'] = '1'

import torch

x = torch.rand(10, device="cuda")
y = torch.arange(20, device="cuda")
try:
    x[y] = 2
    print(x)
except torch.AcceleratorError as e:
    print("Exception was raised", e.args[0])
    print("Captured error code is ", e.error_code)
```

which produces following output
```
Exception was raised CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Exception raised from c10_cuda_check_implementation at /home/ubuntu/pytorch/c10/cuda/CUDAException.cpp:41 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) [clone .cold] from CUDAException.cpp:0
#7 void at::native::gpu_kernel_impl<at::native::AbsFunctor<float> >(at::TensorIteratorBase&, at::native::AbsFunctor<float> const&) [clone .isra.0] from tmpxft_000191fc_00000000-6_AbsKernel.cudafe1.cpp:0
#8 at::native::abs_kernel_cuda(at::TensorIteratorBase&) from ??:0
#9 at::Tensor& at::native::unary_op_impl_with_complex_to_float_out<at::native::abs_stub_DECLARE_DISPATCH_type>(at::Tensor&, at::Tensor const&, at::native::abs_stub_DECLARE_DISPATCH_type&, bool) [clone .constprop.0] from UnaryOps.cpp:0
#10 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA_out_abs_out(at::Tensor const&, at::Tensor&) from RegisterCUDA_0.cpp:0
#11 at::_ops::abs_out::call(at::Tensor const&, at::Tensor&) from ??:0
#12 at::native::abs(at::Tensor const&) from ??:0
#13 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeExplicitAutograd__abs>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeExplicitAutograd_0.cpp:0
#14 at::_ops::abs::redispatch(c10::DispatchKeySet, at::Tensor const&) from ??:0
#15 torch::autograd::VariableType::(anonymous namespace)::abs(c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#16 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&), &torch::autograd::VariableType::(anonymous namespace)::abs>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&> >, at::Tensor (c10::DispatchKeySet, at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#17 at::_ops::abs::call(at::Tensor const&) from ??:0
#18 at::native::isfinite(at::Tensor const&) from ??:0
#19 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__isfinite>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeImplicitAutograd_0.cpp:0
#20 at::_ops::isfinite::call(at::Tensor const&) from ??:0
#21 torch::autograd::THPVariable_isfinite(_object*, _object*, _object*) from python_torch_functions_2.cpp:0
#22 PyObject_CallFunctionObjArgs from ??:0
#23 _PyObject_MakeTpCall from ??:0
#24 _PyEval_EvalFrameDefault from ??:0
#25 _PyObject_FastCallDictTstate from ??:0
#26 _PyStack_AsDict from ??:0
#27 _PyObject_MakeTpCall from ??:0
#28 _PyEval_EvalFrameDefault from ??:0
#29 _PyFunction_Vectorcall from ??:0
#30 _PyEval_EvalFrameDefault from ??:0
#31 _PyFunction_Vectorcall from ??:0
#32 _PyEval_EvalFrameDefault from ??:0
#33 _PyFunction_Vectorcall from ??:0
#34 _PyEval_EvalFrameDefault from ??:0
#35 PyFrame_GetCode from ??:0
#36 PyNumber_Xor from ??:0
#37 PyObject_Str from ??:0
#38 PyFile_WriteObject from ??:0
#39 _PyWideStringList_AsList from ??:0
#40 _PyDict_NewPresized from ??:0
#41 _PyEval_EvalFrameDefault from ??:0
#42 PyEval_EvalCode from ??:0
#43 PyEval_EvalCode from ??:0
#44 PyUnicode_Tailmatch from ??:0
#45 PyInit__collections from ??:0
#46 PyUnicode_Tailmatch from ??:0
#47 _PyRun_SimpleFileObject from ??:0
#48 _PyRun_AnyFileObject from ??:0
#49 Py_RunMain from ??:0
#50 Py_BytesMain from ??:0
#51 __libc_init_first from ??:0
#52 __libc_start_main from ??:0
#53 _start from ??:0

Captured error code is  710
```
Pull Request resolved: #152023
Approved by: https://github.com/eqy, https://github.com/mradmila, https://github.com/ngimel
ghstack dependencies: #154436
pytorchmergebot pushed a commit that referenced this pull request Jun 24, 2025
…56600)

Don't call `sum()` on a tensor that is default constructed.

Previously we could call `sum()` on a tensor that was default-contructed. That would lead to an error like this:

```
Traceback (most recent call last):
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 58, in testPartExecutor
    yield
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 634, in run
    self._callTestMethod(testMethod)
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 589, in _callTestMethod
    if method() is not None:
       ^^^^^^^^
  File "/home/ahmads/personal/pytorch/torch/testing/_internal/common_utils.py", line 3191, in wrapper
    method(*args, **kwargs)
  File "/home/ahmads/personal/pytorch/test/test_nn.py", line 7235, in test_layer_norm_backwards_eps
    ln_out_cuda.backward(grad_output_cuda)
  File "/home/ahmads/personal/pytorch/torch/_tensor.py", line 647, in backward
    torch.autograd.backward(
  File "/home/ahmads/personal/pytorch/torch/autograd/__init__.py", line 354, in backward
    _engine_run_backward(
  File "/home/ahmads/personal/pytorch/torch/autograd/graph.py", line 829, in _engine_run_backward
    return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: tensor does not have a device
Exception raised from device_default at /home/ahmads/personal/pytorch/c10/core/TensorImpl.h:1265 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, char const*) from ??:0
#7 at::TensorBase::options() const from :0
#8 at::meta::resize_reduction(at::impl::MetaBase&, at::Tensor const&, c10::OptionalArrayRef<long>, bool, c10::ScalarType, bool) from :0
#9 at::meta::structured_sum_dim_IntList::meta(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from ??:0
#10 at::(anonymous namespace)::wrapper_CompositeExplicitAutogradNonFunctional_sum_dim_IntList(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from RegisterCompositeExplicitAutogradNonFunctional_0.cpp:0
#11 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>), &at::(anonymous namespace)::wrapper_CompositeExplicitAutogradNonFunctional_sum_dim_IntList>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType> > >, at::Tensor (at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from RegisterCompositeExplicitAutogradNonFunctional_0.cpp:0
#12 at::_ops::sum_dim_IntList::call(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from ??:0
#13 void at::native::(anonymous namespace)::LaunchGammaBetaBackwardCUDAKernel<float, float>(float const*, float const*, float const*, float const*, long, long, at::Tensor*, at::Tensor*, CUstream_st*) from ??:0
#14 void at::native::(anonymous namespace)::LayerNormBackwardKernelImplInternal<float>(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, long, long, at::Tensor*, at::Tensor*, at::Tensor*) from ??:0
#15 at::native::(anonymous namespace)::LayerNormBackwardKernelImpl(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, long, long, at::Tensor*, at::Tensor*, at::Tensor*) from ??:0
#16 at::native::layer_norm_backward_cuda(at::Tensor const&, at::Tensor const&, c10::ArrayRef<long>, at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&, std::optional<at::Tensor> const&, std::array<bool, 3ul>) from ??:0
#17 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA__native_layer_norm_backward(at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&, std::optional<at::Tensor> const&, std::array<bool, 3ul>) from RegisterCUDA_0.cpp:0

```

Now we only call `sum(0)` on tensors that are defined and properly guard the `sum(0)` and assignment.
Pull Request resolved: #156600
Approved by: https://github.com/eqy, https://github.com/ngimel
ethanwee1 added a commit to ethanwee1/pytorch that referenced this pull request Jun 26, 2025
…:warp_size() (pytorch#2293)

Fixes SWDEV-540240, SWDEV-540309, SWDEV-539989

### Error
```
pytorch#24 437.7   what():  HIP error: no ROCm-capable device is detected
pytorch#24 437.7 HIP kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
pytorch#24 437.7 For debugging consider passing AMD_SERIALIZE_KERNEL=3
pytorch#24 437.7 Device-side assertions were explicitly omitted for this error check; the error probably arose while initializing the DSA handlers.
pytorch#24 437.7 Exception raised from c10_hip_check_implementation at /pytorch/c10/hip/HIPException.cpp:44 (most recent call first):
pytorch#24 437.7 frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x88 (0x7f272de18738 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
pytorch#24 437.7 frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x55 (0x7f272ddb42ed in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
...
pytorch#24 437.7 frame pytorch#7: at::cuda::getCurrentDeviceProperties() + 0x9 (0x7f270b5874e9 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_hip.so)
pytorch#24 437.7 frame pytorch#8: at::cuda::warp_size() + 0x9 (0x7f270b587509 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_hip.so)
pytorch#24 437.7 frame pytorch#9: <unknown function> + 0x81ac8b (0x7f2709c27c8b in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_hip.so)
```

### Explanation

ROCm@80cca70
created a static global variable that used `at::cuda::warp_size()` to
initialize its value, which needs GPUs to be visible to query device
properties. However, GPUs are not present on CPU-only build systems.

### Solution
Convert static variable into a static function, thus preventing static
initialization.

### Validation

http://rocm-ci.amd.com/job/pyt_whl_docker_mainline/1461/artifact/build_artifacts.txt/*view*/

Ran microbenchmark to confirm basic functionality:
```
root@ubb4-rack-22:/var/lib/jenkins/pytorch-micro-benchmarking# python3 micro_benchmarking_pytorch.py --network resnet50
INFO: running forward and backward for warmup.
INFO: running the benchmark..
OK: finished running benchmark..
--------------------SUMMARY--------------------------
Microbenchmark for network : resnet50
Num devices: 1
Dtype: FP32
Mini batch size [img] : 64
Time per mini-batch : 0.10158218145370483
Throughput [img/sec] : 630.0317544289736=
```
jagadish-amd pushed a commit to jagadish-amd/pytorch that referenced this pull request Jul 9, 2025
…:warp_size() (pytorch#2293)

Fixes SWDEV-540240, SWDEV-540309, SWDEV-539989

### Error
```
pytorch#24 437.7   what():  HIP error: no ROCm-capable device is detected
pytorch#24 437.7 HIP kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
pytorch#24 437.7 For debugging consider passing AMD_SERIALIZE_KERNEL=3
pytorch#24 437.7 Device-side assertions were explicitly omitted for this error check; the error probably arose while initializing the DSA handlers.
pytorch#24 437.7 Exception raised from c10_hip_check_implementation at /pytorch/c10/hip/HIPException.cpp:44 (most recent call first):
pytorch#24 437.7 frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x88 (0x7f272de18738 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
pytorch#24 437.7 frame pytorch#1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x55 (0x7f272ddb42ed in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
...
pytorch#24 437.7 frame pytorch#7: at::cuda::getCurrentDeviceProperties() + 0x9 (0x7f270b5874e9 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_hip.so)
pytorch#24 437.7 frame pytorch#8: at::cuda::warp_size() + 0x9 (0x7f270b587509 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_hip.so)
pytorch#24 437.7 frame pytorch#9: <unknown function> + 0x81ac8b (0x7f2709c27c8b in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_hip.so)
```

### Explanation

ROCm@80cca70
created a static global variable that used `at::cuda::warp_size()` to
initialize its value, which needs GPUs to be visible to query device
properties. However, GPUs are not present on CPU-only build systems.

### Solution
Convert static variable into a static function, thus preventing static
initialization.

### Validation

http://rocm-ci.amd.com/job/pyt_whl_docker_mainline/1461/artifact/build_artifacts.txt/*view*/

Ran microbenchmark to confirm basic functionality:
```
root@ubb4-rack-22:/var/lib/jenkins/pytorch-micro-benchmarking# python3 micro_benchmarking_pytorch.py --network resnet50
INFO: running forward and backward for warmup.
INFO: running the benchmark..
OK: finished running benchmark..
--------------------SUMMARY--------------------------
Microbenchmark for network : resnet50
Num devices: 1
Dtype: FP32
Mini batch size [img] : 64
Time per mini-batch : 0.10158218145370483
Throughput [img/sec] : 630.0317544289736=
```
pytorchmergebot pushed a commit that referenced this pull request Jul 19, 2025
For tensor with non-zero offset, it must be multiplied by element size

Add regression test by creating Tensor in array of 6 elements with offset 3, which before the fix crashed with
```
C++ exception with description "setStorage: sizes [3, 3], strides [0, 1], storage offset 3, and itemsize 4 requiring a storage size of 24 are out of bounds for storage of size 15
Exception raised from checkInBoundsForStorage at /Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/Resize.h:123 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>) + 56 (0x104a9cd44 in libc10.dylib)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) + 120 (0x104a9a05c in libc10.dylib)
frame #2: void at::native::checkInBoundsForStorage<long long>(c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long, caffe2::TypeMeta const&, c10::Storage const&) + 656 (0x111dbd314 in libtorch_cpu.dylib)
frame #3: void at::native::setStrided<long long>(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long) + 152 (0x111dcd22c in libtorch_cpu.dylib)
frame #4: at::native::as_strided_tensorimpl(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) + 312 (0x111dccf98 in libtorch_cpu.dylib)
frame #5: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CPU__as_strided(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>>>, at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 104 (0x1129a1e94 in libtorch_cpu.dylib)
frame #6: at::_ops::as_strided::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 476 (0x112200ad0 in libtorch_cpu.dylib)
frame #7: at::Tensor::as_strided(c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) const + 236 (0x1115db098 in libtorch_cpu.dylib)
frame #8: at::native::expand(at::Tensor const&, c10::ArrayRef<long long>, bool) + 348 (0x111dcc0d4 in libtorch_cpu.dylib)
frame #9: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::ADInplaceOrView::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 116 (0x1157ac410 in libtorch_cpu.dylib)
frame #10: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::autograd::VariableType::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 992 (0x114e8b010 in libtorch_cpu.dylib)
frame #11: at::_ops::expand::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 316 (0x112743c90 in libtorch_cpu.dylib)
frame #12: at::expand_size(at::Tensor const&, c10::ArrayRef<long long>) + 164 (0x1047d82b4 in basic)
frame #13: BasicTest_TestForBlobResizeCPU_Test::TestBody() + 284 (0x1047d8048 in basic)
```
Pull Request resolved: #158690
Approved by: https://github.com/angelayi
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant