Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion test/test_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -512,7 +512,7 @@ def test_initialize_stats_from_observation_norms(device, keys, composed, initial
with pytest.raises(
ValueError, match="Attempted to use an uninitialized parameter"
):
pre_init_state_dict = t_env.transform.state_dict()
t_env.transform.state_dict()
return
pre_init_state_dict = t_env.transform.state_dict()
initialize_observation_norm_transforms(
Expand Down
110 changes: 94 additions & 16 deletions test/test_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -858,24 +858,15 @@ def _get_mock_input_td(
@pytest.mark.parametrize("n_agents", [1, 3])
@pytest.mark.parametrize("share_params", [True, False])
@pytest.mark.parametrize("centralised", [True, False])
@pytest.mark.parametrize(
"batch",
[
(10,),
(
10,
3,
),
(),
],
)
def test_mlp(
@pytest.mark.parametrize("n_agent_inputs", [6, None])
@pytest.mark.parametrize("batch", [(10,), (10, 3), ()])
def test_multiagent_mlp(
self,
n_agents,
centralised,
share_params,
batch,
n_agent_inputs=6,
n_agent_inputs,
n_agent_outputs=2,
):
torch.manual_seed(0)
Expand All @@ -887,6 +878,8 @@ def test_mlp(
share_params=share_params,
depth=2,
)
if n_agent_inputs is None:
n_agent_inputs = 6
td = self._get_mock_input_td(n_agents, n_agent_inputs, batch=batch)
obs = td.get(("agents", "observation"))

Expand Down Expand Up @@ -921,17 +914,63 @@ def test_mlp(
# same input different output
assert not torch.allclose(out[..., i, :], out[..., j, :])

def test_multiagent_mlp_lazy(self):
mlp = MultiAgentMLP(
n_agent_inputs=None,
n_agent_outputs=6,
n_agents=3,
centralised=True,
share_params=False,
depth=2,
)
optim = torch.optim.Adam(mlp.parameters())
for p in mlp.parameters():
if isinstance(p, torch.nn.parameter.UninitializedParameter):
break
else:
raise AssertionError("No UninitializedParameter found")
for p in optim.param_groups[0]["params"]:
if isinstance(p, torch.nn.parameter.UninitializedParameter):
break
else:
raise AssertionError("No UninitializedParameter found")
for _ in range(2):
td = self._get_mock_input_td(3, 4, batch=(10,))
obs = td.get(("agents", "observation"))
out = mlp(obs)
out.mean().backward()
optim.step()
for p in mlp.parameters():
if isinstance(p, torch.nn.parameter.UninitializedParameter):
raise AssertionError("UninitializedParameter found")
for p in optim.param_groups[0]["params"]:
if isinstance(p, torch.nn.parameter.UninitializedParameter):
raise AssertionError("UninitializedParameter found")

@pytest.mark.parametrize("n_agents", [1, 3])
@pytest.mark.parametrize("share_params", [True, False])
@pytest.mark.parametrize("centralised", [True, False])
@pytest.mark.parametrize("channels", [3, None])
@pytest.mark.parametrize("batch", [(10,), (10, 3), ()])
def test_cnn(
self, n_agents, centralised, share_params, batch, x=50, y=50, channels=3
def test_multiagent_cnn(
self,
n_agents,
centralised,
share_params,
batch,
channels,
x=50,
y=50,
):
torch.manual_seed(0)
cnn = MultiAgentConvNet(
n_agents=n_agents, centralised=centralised, share_params=share_params
n_agents=n_agents,
centralised=centralised,
share_params=share_params,
in_features=channels,
)
if channels is None:
channels = 3
td = TensorDict(
{
"agents": TensorDict(
Expand Down Expand Up @@ -973,6 +1012,45 @@ def test_cnn(
# same input different output
assert not torch.allclose(out[..., i, :], out[..., j, :])

def test_multiagent_cnn_lazy(self):
cnn = MultiAgentConvNet(
n_agents=5,
centralised=False,
share_params=False,
in_features=None,
)
optim = torch.optim.Adam(cnn.parameters())
for p in cnn.parameters():
if isinstance(p, torch.nn.parameter.UninitializedParameter):
break
else:
raise AssertionError("No UninitializedParameter found")
for p in optim.param_groups[0]["params"]:
if isinstance(p, torch.nn.parameter.UninitializedParameter):
break
else:
raise AssertionError("No UninitializedParameter found")
for _ in range(2):
td = TensorDict(
{
"agents": TensorDict(
{"observation": torch.randn(10, 5, 3, 50, 50)},
[10, 5],
)
},
batch_size=[10],
)
obs = td[("agents", "observation")]
out = cnn(obs)
out.mean().backward()
optim.step()
for p in cnn.parameters():
if isinstance(p, torch.nn.parameter.UninitializedParameter):
raise AssertionError("UninitializedParameter found")
for p in optim.param_groups[0]["params"]:
if isinstance(p, torch.nn.parameter.UninitializedParameter):
raise AssertionError("UninitializedParameter found")

@pytest.mark.parametrize("n_agents", [1, 3])
@pytest.mark.parametrize(
"batch",
Expand Down
Loading