Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 92 additions & 58 deletions test/test_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,65 +59,99 @@ def double_prec_fixture():
torch.set_default_dtype(dtype)


@pytest.mark.parametrize("in_features", [3, 10, None])
@pytest.mark.parametrize("out_features", [3, (3, 10)])
@pytest.mark.parametrize("depth, num_cells", [(3, 32), (None, (32, 32, 32))])
@pytest.mark.parametrize(
"activation_class, activation_kwargs",
[(nn.ReLU, {"inplace": True}), (nn.ReLU, {}), (nn.PReLU, {})],
)
@pytest.mark.parametrize(
"norm_class, norm_kwargs",
[
(nn.LazyBatchNorm1d, {}),
(nn.BatchNorm1d, {"num_features": 32}),
(nn.LayerNorm, {"normalized_shape": 32}),
],
)
@pytest.mark.parametrize("dropout", [0.0, 0.5])
@pytest.mark.parametrize("bias_last_layer", [True, False])
@pytest.mark.parametrize("single_bias_last_layer", [True, False])
@pytest.mark.parametrize("layer_class", [nn.Linear, NoisyLinear])
@pytest.mark.parametrize("device", get_default_devices())
def test_mlp(
in_features,
out_features,
depth,
num_cells,
activation_class,
activation_kwargs,
dropout,
bias_last_layer,
norm_class,
norm_kwargs,
single_bias_last_layer,
layer_class,
device,
seed=0,
):
torch.manual_seed(seed)
batch = 2
mlp = MLP(
in_features=in_features,
out_features=out_features,
depth=depth,
num_cells=num_cells,
activation_class=activation_class,
activation_kwargs=activation_kwargs,
norm_class=norm_class,
norm_kwargs=norm_kwargs,
dropout=dropout,
bias_last_layer=bias_last_layer,
single_bias_last_layer=False,
layer_class=layer_class,
device=device,
class TestMLP:
@pytest.mark.parametrize("in_features", [3, 10, None])
@pytest.mark.parametrize("out_features", [3, (3, 10)])
@pytest.mark.parametrize("depth, num_cells", [(3, 32), (None, (32, 32, 32))])
@pytest.mark.parametrize(
"activation_class, activation_kwargs",
[(nn.ReLU, {"inplace": True}), (nn.ReLU, {}), (nn.PReLU, {})],
)
if in_features is None:
in_features = 5
x = torch.randn(batch, in_features, device=device)
y = mlp(x)
out_features = [out_features] if isinstance(out_features, Number) else out_features
assert y.shape == torch.Size([batch, *out_features])
@pytest.mark.parametrize(
"norm_class, norm_kwargs",
[
(nn.LazyBatchNorm1d, {}),
(nn.BatchNorm1d, {"num_features": 32}),
(nn.LayerNorm, {"normalized_shape": 32}),
],
)
@pytest.mark.parametrize("dropout", [0.0, 0.5])
@pytest.mark.parametrize("bias_last_layer", [True, False])
@pytest.mark.parametrize("single_bias_last_layer", [True, False])
@pytest.mark.parametrize("layer_class", [nn.Linear, NoisyLinear])
@pytest.mark.parametrize("device", get_default_devices())
def test_mlp(
self,
in_features,
out_features,
depth,
num_cells,
activation_class,
activation_kwargs,
dropout,
bias_last_layer,
norm_class,
norm_kwargs,
single_bias_last_layer,
layer_class,
device,
seed=0,
):
torch.manual_seed(seed)
batch = 2
mlp = MLP(
in_features=in_features,
out_features=out_features,
depth=depth,
num_cells=num_cells,
activation_class=activation_class,
activation_kwargs=activation_kwargs,
norm_class=norm_class,
norm_kwargs=norm_kwargs,
dropout=dropout,
bias_last_layer=bias_last_layer,
single_bias_last_layer=False,
layer_class=layer_class,
device=device,
)
if in_features is None:
in_features = 5
x = torch.randn(batch, in_features, device=device)
y = mlp(x)
out_features = (
[out_features] if isinstance(out_features, Number) else out_features
)
assert y.shape == torch.Size([batch, *out_features])

def test_kwargs(self):
def make_activation(shift):
return lambda x: x + shift

def layer(*args, **kwargs):
linear = nn.Linear(*args, **kwargs)
linear.weight.data.copy_(torch.eye(4))
return linear

in_features = 4
out_features = 4
num_cells = [4, 4, 4]
mlp = MLP(
in_features=in_features,
out_features=out_features,
num_cells=num_cells,
activation_class=make_activation,
activation_kwargs=[{"shift": 0}, {"shift": 1}, {"shift": 2}],
layer_class=layer,
layer_kwargs=[{"bias": False}] * 4,
bias_last_layer=False,
)
x = torch.zeros(4)
y = mlp(x)
for i, module in enumerate(mlp.modules()):
if isinstance(module, nn.Linear):
assert (module.weight == torch.eye(4)).all(), i
assert module.bias is None, i
assert (y == 3).all()


@pytest.mark.parametrize("in_features", [3, 10, None])
Expand Down
3 changes: 2 additions & 1 deletion torchrl/modules/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from torchrl.modules.tensordict_module.common import DistributionalDQNnet

from .distributions import (
Delta,
distributions_maps,
Expand All @@ -24,7 +26,6 @@
DdpgMlpActor,
DdpgMlpQNet,
DecisionTransformer,
DistributionalDQNnet,
DreamerActor,
DTActor,
DuelingCnnDQNet,
Expand Down
4 changes: 3 additions & 1 deletion torchrl/modules/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
# LICENSE file in the root directory of this source tree.


from torchrl.modules.tensordict_module.common import DistributionalDQNnet

from .decision_transformer import DecisionTransformer
from .exploration import NoisyLazyLinear, NoisyLinear, reset_noise
from .model_based import DreamerActor, ObsDecoder, ObsEncoder, RSSMPosterior, RSSMPrior
Expand All @@ -15,9 +17,9 @@
DdpgCnnQNet,
DdpgMlpActor,
DdpgMlpQNet,
DistributionalDQNnet,
DTActor,
DuelingCnnDQNet,
DuelingMlpDQNet,
LSTMNet,
MLP,
OnlineDTActor,
Expand Down
Loading