Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 43 additions & 19 deletions test/test_rb.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,8 @@
import pytest
import torch
from _utils_internal import get_available_devices
from tensordict.tensordict import assert_allclose_td, TensorDictBase, TensorDict
from torchrl.data import (
PrioritizedReplayBuffer,
ReplayBuffer,
TensorDictReplayBuffer,
)
from tensordict.tensordict import assert_allclose_td, TensorDict, TensorDictBase
from torchrl.data import PrioritizedReplayBuffer, ReplayBuffer, TensorDictReplayBuffer
from torchrl.data.replay_buffers import (
rb_prototype,
samplers,
Expand All @@ -32,25 +28,25 @@
)
from torchrl.data.replay_buffers.writers import RoundRobinWriter
from torchrl.envs.transforms.transforms import (
CatTensors,
FlattenObservation,
SqueezeTransform,
ToTensorImage,
RewardClipping,
BinarizeReward,
Resize,
CenterCrop,
UnsqueezeTransform,
GrayScale,
ObservationNorm,
CatFrames,
RewardScaling,
DoubleToFloat,
VecNorm,
CatTensors,
CenterCrop,
DiscreteActionProjection,
DoubleToFloat,
FiniteTensorDictCheck,
FlattenObservation,
GrayScale,
gSDENoise,
ObservationNorm,
PinMemoryTransform,
Resize,
RewardClipping,
RewardScaling,
SqueezeTransform,
ToTensorImage,
UnsqueezeTransform,
VecNorm,
)

_has_tv = importlib.util.find_spec("torchvision") is not None
Expand Down Expand Up @@ -198,6 +194,34 @@ def test_index(self, rb_type, sampler, writer, storage, size):
assert b


@pytest.mark.parametrize("max_size", [1000])
@pytest.mark.parametrize("shape", [[3, 4]])
@pytest.mark.parametrize("storage", [LazyTensorStorage, LazyMemmapStorage])
class TestStorages:
def _get_nested_td(self, shape):
nested_td = TensorDict(
{
"key1": torch.ones(*shape),
"key2": torch.ones(*shape),
"next": TensorDict(
{
"key1": torch.ones(*shape),
"key2": torch.ones(*shape),
},
shape,
),
},
shape,
)
return nested_td

def test_init(self, max_size, shape, storage):
td = self._get_nested_td(shape)
mystorage = storage(max_size=max_size)
mystorage._init(td)
assert mystorage._storage.shape == (max_size, *shape)


@pytest.mark.parametrize("priority_key", ["pk", "td_error"])
@pytest.mark.parametrize("contiguous", [True, False])
@pytest.mark.parametrize("device", get_available_devices())
Expand Down
25 changes: 9 additions & 16 deletions torchrl/data/replay_buffers/storages.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,11 @@
import os
from collections import OrderedDict
from copy import copy
from typing import Any, Sequence, Union, Dict
from typing import Any, Dict, Sequence, Union

import torch
from tensordict.memmap import MemmapTensor
from tensordict.tensordict import TensorDictBase, TensorDict
from tensordict.tensordict import TensorDict, TensorDictBase

from torchrl._utils import _CKPT_BACKEND
from torchrl.data.replay_buffers.utils import INT_CLASSES
Expand Down Expand Up @@ -236,20 +236,13 @@ def _init(self, data: Union[TensorDictBase, torch.Tensor]) -> None:
dtype=data.dtype,
)
else:
out = TensorDict({}, [self.max_size, *data.shape])
print("The storage is being created: ")
for key, tensor in data.items():
if isinstance(tensor, TensorDictBase):
out[key] = (
tensor.expand(self.max_size).clone().to(self.device).zero_()
)
else:
out[key] = torch.empty(
self.max_size,
*tensor.shape,
device=self.device,
dtype=tensor.dtype,
)
out = (
data.expand(self.max_size, *data.shape)
.to_tensordict()
.zero_()
.clone()
.to(self.device)
)

self._storage = out
self.initialized = True
Expand Down