|
| 1 | +import copy |
| 2 | +import os |
| 3 | +import shutil |
| 4 | +import tempfile |
| 5 | +import time |
| 6 | +import unittest |
| 7 | +from concurrent.futures import ThreadPoolExecutor |
| 8 | +from dataclasses import dataclass, field |
| 9 | +from unittest import mock |
| 10 | + |
| 11 | +import torch |
| 12 | + |
| 13 | +from torchtitan.checkpoint import CheckpointManager |
| 14 | + |
| 15 | + |
| 16 | +def fake_dcp_save(state, checkpoint_id): |
| 17 | + state = {k: v.state_dict() for k, v in state.items()} |
| 18 | + os.makedirs(checkpoint_id, exist_ok=True) |
| 19 | + torch.save(state, os.path.join(checkpoint_id, "state.pt")) |
| 20 | + |
| 21 | + |
| 22 | +def fake_dcp_load(state, checkpoint_id): |
| 23 | + state["trainer"].dcp_load_is_called = 7312 |
| 24 | + |
| 25 | + |
| 26 | +def fake_async_save(state, checkpoint_id, process_group): |
| 27 | + def run_save(): |
| 28 | + fake_dcp_save(state, checkpoint_id) |
| 29 | + |
| 30 | + with ThreadPoolExecutor(max_workers=1) as executor: |
| 31 | + f = executor.submit(run_save) |
| 32 | + |
| 33 | + mock_future = mock.Mock() |
| 34 | + mock_future.result = mock.Mock(side_effect=f.result) |
| 35 | + return mock_future |
| 36 | + |
| 37 | + |
| 38 | +def fake_get_model_state_dict(model, *args, **kwargs): |
| 39 | + return model.state_dict() |
| 40 | + |
| 41 | + |
| 42 | +@dataclass |
| 43 | +class DummyCheckpointConfig: |
| 44 | + enable_checkpoint: bool = True |
| 45 | + folder: str = "dummy_folder" |
| 46 | + interval: int = 10 |
| 47 | + async_mode: str = "disabled" |
| 48 | + keep_latest_k: int = 0 |
| 49 | + model_weights_only: bool = False |
| 50 | + export_dtype: str = "float32" |
| 51 | + exclude_from_loading = [] |
| 52 | + |
| 53 | + |
| 54 | +@dataclass |
| 55 | +class DummyJob: |
| 56 | + dump_folder: str = "dummy_folder" |
| 57 | + |
| 58 | + |
| 59 | +@dataclass |
| 60 | +class DummyJobConfig: |
| 61 | + checkpoint: DummyCheckpointConfig = field(default_factory=DummyCheckpointConfig) |
| 62 | + job: DummyJob = field(default_factory=DummyJob) |
| 63 | + |
| 64 | + |
| 65 | +# Dummy instances to supply as constructor arguments. |
| 66 | +dummy_dataloader = mock.Mock() |
| 67 | +dummy_dataloader.state_dict = mock.Mock(side_effect=lambda: {"dataloader": 1}) |
| 68 | +dummy_model_parts = [mock.Mock()] |
| 69 | +dummy_model_parts[0].state_dict = mock.Mock(side_effect=lambda: {"model": 2}) |
| 70 | +dummy_optimizers = mock.Mock() |
| 71 | +dummy_optimizers.state_dict = mock.Mock(side_effect=lambda: {"optimizer": 3}) |
| 72 | +dummy_lr_schedulers = mock.Mock() |
| 73 | +dummy_lr_schedulers.state_dict = mock.Mock(side_effect=lambda: {"lr_scheduler": 4}) |
| 74 | + |
| 75 | + |
| 76 | +class TestCheckpointManager(unittest.TestCase): |
| 77 | + def setUp(self): |
| 78 | + self.temp_dir = tempfile.mkdtemp() |
| 79 | + |
| 80 | + self.dummy_job = DummyJob(dump_folder=self.temp_dir) |
| 81 | + self.job_config = DummyJobConfig(job=self.dummy_job) |
| 82 | + self.checkpoint_folder = os.path.join( |
| 83 | + self.dummy_job.dump_folder, self.job_config.checkpoint.folder |
| 84 | + ) |
| 85 | + os.makedirs(self.checkpoint_folder, exist_ok=True) |
| 86 | + self.trainer_state = mock.Mock() |
| 87 | + self.trainer_state.state_dict = mock.Mock(side_effect=lambda: {"my_state": 765}) |
| 88 | + |
| 89 | + def tearDown(self): |
| 90 | + # Remove the temporary directory after each test. |
| 91 | + shutil.rmtree(self.temp_dir) |
| 92 | + |
| 93 | + @mock.patch( |
| 94 | + "torchtitan.checkpoint.get_model_state_dict", |
| 95 | + side_effect=fake_get_model_state_dict, |
| 96 | + ) |
| 97 | + @mock.patch("torchtitan.checkpoint.dcp.save", side_effect=fake_dcp_save) |
| 98 | + def test_save(self, *_): |
| 99 | + """Test that calling save() writes a checkpoint file to disk.""" |
| 100 | + job_config = DummyJobConfig(job=self.dummy_job) |
| 101 | + manager = CheckpointManager( |
| 102 | + dummy_dataloader, |
| 103 | + dummy_model_parts, |
| 104 | + dummy_optimizers, |
| 105 | + dummy_lr_schedulers, |
| 106 | + {"trainer": self.trainer_state}, |
| 107 | + job_config, |
| 108 | + ) |
| 109 | + step = 20 |
| 110 | + manager.save(curr_step=step, force=True) |
| 111 | + state_file = self._checkpoint_id(step) |
| 112 | + self.assertTrue( |
| 113 | + os.path.exists(state_file), "The checkpoint file was not created on disk." |
| 114 | + ) |
| 115 | + loaded_state = torch.load(state_file, weights_only=False) |
| 116 | + self.assertEqual( |
| 117 | + loaded_state["trainer"]["my_state"], |
| 118 | + 765, |
| 119 | + "Saved state does not match expected value.", |
| 120 | + ) |
| 121 | + |
| 122 | + @mock.patch( |
| 123 | + "torchtitan.checkpoint.get_model_state_dict", |
| 124 | + side_effect=fake_get_model_state_dict, |
| 125 | + ) |
| 126 | + @mock.patch("torchtitan.checkpoint.dcp.load", side_effect=fake_dcp_load) |
| 127 | + @mock.patch("torchtitan.checkpoint.dcp.save", side_effect=fake_dcp_save) |
| 128 | + def test_load(self, *_): |
| 129 | + """Test that load() properly reads the checkpoint file from disk and restores state.""" |
| 130 | + job_config = DummyJobConfig(job=self.dummy_job) |
| 131 | + manager = CheckpointManager( |
| 132 | + dummy_dataloader, |
| 133 | + dummy_model_parts, |
| 134 | + dummy_optimizers, |
| 135 | + dummy_lr_schedulers, |
| 136 | + {"trainer": self.trainer_state}, |
| 137 | + job_config, |
| 138 | + ) |
| 139 | + step = 30 |
| 140 | + manager.save(curr_step=step, force=True) |
| 141 | + # Simulate a state change. |
| 142 | + manager.states["test"] = 999 |
| 143 | + success = manager.load(step=step) |
| 144 | + self.assertTrue( |
| 145 | + success, |
| 146 | + "The load() method should have returned True for an existing checkpoint.", |
| 147 | + ) |
| 148 | + self.assertTrue(hasattr(manager.states["trainer"], "dcp_load_is_called")) |
| 149 | + |
| 150 | + self.assertEqual( |
| 151 | + manager.states["trainer"].dcp_load_is_called, |
| 152 | + 7312, |
| 153 | + "The state was not correctly restored after loading.", |
| 154 | + ) |
| 155 | + |
| 156 | + @mock.patch("torchtitan.checkpoint.dist.get_rank", return_value=0) |
| 157 | + @mock.patch( |
| 158 | + "torchtitan.checkpoint.get_model_state_dict", |
| 159 | + side_effect=fake_get_model_state_dict, |
| 160 | + ) |
| 161 | + @mock.patch("torchtitan.checkpoint.dcp.save", side_effect=fake_dcp_save) |
| 162 | + def test_purge_stale_checkpoints_rank_zero(self, *_): |
| 163 | + """ |
| 164 | + Test that when keep_latest_k is 3 and dist.get_rank() returns 0, stale checkpoints |
| 165 | + are purged by placing the correct paths into the purge queue. |
| 166 | + """ |
| 167 | + job_config = DummyJobConfig(job=self.dummy_job) |
| 168 | + job_config.checkpoint.keep_latest_k = 3 |
| 169 | + manager = CheckpointManager( |
| 170 | + dummy_dataloader, |
| 171 | + dummy_model_parts, |
| 172 | + dummy_optimizers, |
| 173 | + dummy_lr_schedulers, |
| 174 | + {"trainer": self.trainer_state}, |
| 175 | + job_config, |
| 176 | + ) |
| 177 | + steps = [10, 20, 30, 40, 50] |
| 178 | + for s in steps: |
| 179 | + manager.save(curr_step=s, force=False) |
| 180 | + while not manager.purge_queue.empty(): |
| 181 | + time.sleep(1) |
| 182 | + time.sleep(1) |
| 183 | + os.sync() |
| 184 | + expected_paths = [ |
| 185 | + os.path.join(self.checkpoint_folder, "step-30"), |
| 186 | + os.path.join(self.checkpoint_folder, "step-40"), |
| 187 | + os.path.join(self.checkpoint_folder, "step-50"), |
| 188 | + ] |
| 189 | + for step in [10, 20]: |
| 190 | + self.assertFalse( |
| 191 | + os.path.exists(self._checkpoint_id(step)), |
| 192 | + "The checkpoint is not purged.", |
| 193 | + ) |
| 194 | + |
| 195 | + for step in [30, 40, 50]: |
| 196 | + self.assertTrue( |
| 197 | + os.path.exists(self._checkpoint_id(step)), "The checkpointis purged." |
| 198 | + ) |
| 199 | + |
| 200 | + @mock.patch("torchtitan.checkpoint.dist.get_rank", return_value=1) |
| 201 | + @mock.patch( |
| 202 | + "torchtitan.checkpoint.get_model_state_dict", |
| 203 | + side_effect=fake_get_model_state_dict, |
| 204 | + ) |
| 205 | + @mock.patch("torchtitan.checkpoint.dcp.save", side_effect=fake_dcp_save) |
| 206 | + def test_purge_stale_checkpoints_rank_nonzero(self, *_): |
| 207 | + """ |
| 208 | + Test that when dist.get_rank() returns a non-zero value, the purge logic does not |
| 209 | + place any paths in the purge queue. |
| 210 | + """ |
| 211 | + job_config = DummyJobConfig(job=self.dummy_job) |
| 212 | + job_config.checkpoint.keep_latest_k = 3 |
| 213 | + manager = CheckpointManager( |
| 214 | + dummy_dataloader, |
| 215 | + dummy_model_parts, |
| 216 | + dummy_optimizers, |
| 217 | + dummy_lr_schedulers, |
| 218 | + {"trainer": self.trainer_state}, |
| 219 | + job_config, |
| 220 | + ) |
| 221 | + steps = [10, 20, 30, 40, 50] |
| 222 | + for s in steps: |
| 223 | + manager.save(curr_step=s, force=False) |
| 224 | + while not manager.purge_queue.empty(): |
| 225 | + time.sleep(1) |
| 226 | + time.sleep(1) |
| 227 | + os.sync() |
| 228 | + |
| 229 | + for step in [10, 20, 30, 40, 50]: |
| 230 | + self.assertTrue( |
| 231 | + os.path.exists(self._checkpoint_id(step)), "The checkpointis purged." |
| 232 | + ) |
| 233 | + |
| 234 | + @mock.patch("torchtitan.checkpoint.dist.new_group") |
| 235 | + @mock.patch( |
| 236 | + "torchtitan.checkpoint.get_model_state_dict", |
| 237 | + side_effect=fake_get_model_state_dict, |
| 238 | + ) |
| 239 | + @mock.patch("torchtitan.checkpoint.dcp.async_save", side_effect=fake_async_save) |
| 240 | + def test_async_save_calls_async_wait(self, *_): |
| 241 | + """ |
| 242 | + Test that in async mode (AsyncMode.ASYNC), calling save() twice correctly waits |
| 243 | + on the previous async future via _async_wait(). |
| 244 | + """ |
| 245 | + # Set async_mode to "async" in the job configuration. |
| 246 | + job_config = DummyJobConfig(job=self.dummy_job) |
| 247 | + job_config.checkpoint.async_mode = "async" |
| 248 | + manager = CheckpointManager( |
| 249 | + dummy_dataloader, |
| 250 | + dummy_model_parts, |
| 251 | + dummy_optimizers, |
| 252 | + dummy_lr_schedulers, |
| 253 | + {"trainer": self.trainer_state}, |
| 254 | + job_config, |
| 255 | + ) |
| 256 | + # First save: should schedule an async save. |
| 257 | + manager.save(curr_step=10, force=False) |
| 258 | + f = manager.async_future |
| 259 | + f.result.assert_not_called() |
| 260 | + manager.save(curr_step=20, force=False) |
| 261 | + f.result.assert_called_once() |
| 262 | + f = manager.async_future |
| 263 | + f.result.assert_not_called() |
| 264 | + |
| 265 | + def _checkpoint_id(self, step): |
| 266 | + checkpoint_id = os.path.join(self.checkpoint_folder, f"step-{step}") |
| 267 | + state_file = os.path.join(checkpoint_id, "state.pt") |
| 268 | + return state_file |
| 269 | + |
| 270 | + |
| 271 | +if __name__ == "__main__": |
| 272 | + unittest.main() |
0 commit comments