This repository was archived by the owner on Aug 1, 2023. It is now read-only.
Fork/join parallelism for ensemble export modules #310
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Summary:
This adds fork/join parallelism to the EncoderEnsemble and DecoderBatchedStepEnsemble models. Note that when run in Python, these calls are no-op, and similarly we remove these calls before exporting to ONNX. But when we run in the PyTorch native runtime, we will now have the opportunity to run these sections in parallel.
Benchmark validation is pending me slogging through FBLearner Flow issues, as usual
Differential Revision: D13827861