Skip to content

create_feature_extractor does not track 'if' in forward #4753

@rvandeghen

Description

@rvandeghen

🐛 Describe the bug

It looks like create_feature_extractor does not track if statement in forward, for example with the efficientnet architecture:

import torchvision

efficientnetb0 = torchvision.models.efficientnet_b0()
return_nodes = {f'features.{k}': str(v) for v, k in enumerate([3, 4, 6, 7])}

backbone = torchvision.models.feature_extraction.create_feature_extractor(efficientnetb0, return_nodes=return_nodes)

# print first Sequential module for efficientnetb0
print(efficientnetb0.features[1])
>>> Sequential(
  (0): MBConv(
    (block): Sequential(
      (0): ConvNormActivation(
        (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): SiLU(inplace=True)
      )
      (1): SqueezeExcitation(
        (avgpool): AdaptiveAvgPool2d(output_size=1)
        (fc1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
        (fc2): Conv2d(8, 32, kernel_size=(1, 1), stride=(1, 1))
        (activation): SiLU(inplace=True)
        (scale_activation): Sigmoid()
      )
      (2): ConvNormActivation(
        (0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (stochastic_depth): StochasticDepth(p=0.0, mode=row)
  )
)

# print same module for backbone
>>> (1): Module(
    (0): Module(
      (block): Module(
        (0): Module(
          (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
          (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): SiLU(inplace=True)
        )
        (1): Module(
          (avgpool): AdaptiveAvgPool2d(output_size=1)
          (fc1): Conv2d(32, 8, kernel_size=(1, 1), stride=(1, 1))
          (activation): SiLU(inplace=True)
          (fc2): Conv2d(8, 32, kernel_size=(1, 1), stride=(1, 1))
          (scale_activation): Sigmoid()
        )
        (2): Module(
          (0): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
  )

Is the StochasticDepth layer implemented but hidden in the backbone or is it missing (due to the if) ?

Versions

Collecting environment information...
PyTorch version: 1.10.0
Is debug build: False
CUDA used to build PyTorch: 10.2
ROCM used to build PyTorch: N/A

OS: CentOS Linux release 8.2.2004 (Core) (x86_64)
GCC version: (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.9

Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0] (64-bit runtime)
Python platform: Linux-4.18.0-193.6.3.el8_2.x86_64-x86_64-with-centos-8.2.2004-Core
Is CUDA available: False
CUDA runtime version: Could not collect
GPU models and configuration: No devices found.
Nvidia driver version: Could not collect
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A

Versions of relevant libraries:
[pip3] numpy==1.19.1
[pip3] torch==1.10.0
[pip3] torchvision==0.11.1
[conda] blas 1.0 mkl
[conda] cudatoolkit 10.2.89 hfd86e86_1
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] mkl 2020.2 256
[conda] mkl-service 2.3.0 py36he8ac12f_0
[conda] mkl_fft 1.3.0 py36h54f3939_0
[conda] mkl_random 1.1.1 py36h0573a6f_0
[conda] numpy 1.19.1 py36hbc911f0_0
[conda] numpy-base 1.19.1 py36hfa32c7d_0
[conda] pytorch 1.10.0 py3.6_cuda10.2_cudnn7.6.5_0 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] torchvision 0.11.1 py36_cu102 pytorch

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions