Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 54 additions & 54 deletions test/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -330,60 +330,6 @@ def test_convert_image_dtype_int_to_int_consistency(self):
self.assertEqual(actual_min, desired_min)
self.assertEqual(actual_max, desired_max)

@unittest.skipIf(accimage is None, 'accimage not available')
def test_accimage_to_tensor(self):
trans = transforms.ToTensor()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

torch.testing.assert_close(output, expected_output)

@unittest.skipIf(accimage is None, 'accimage not available')
def test_accimage_pil_to_tensor(self):
trans = transforms.PILToTensor()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

self.assertEqual(expected_output.size(), output.size())
torch.testing.assert_close(output, expected_output, check_stride=False)

@unittest.skipIf(accimage is None, 'accimage not available')
def test_accimage_resize(self):
trans = transforms.Compose([
transforms.Resize(256, interpolation=Image.LINEAR),
transforms.ToTensor(),
])

# Checking if Compose, Resize and ToTensor can be printed as string
trans.__repr__()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

self.assertEqual(expected_output.size(), output.size())
self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
self.assertLess((expected_output - output).var(), 1e-5)
# note the high absolute tolerance
self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))

@unittest.skipIf(accimage is None, 'accimage not available')
def test_accimage_crop(self):
trans = transforms.Compose([
transforms.CenterCrop(256),
transforms.ToTensor(),
])

# Checking if Compose, CenterCrop and ToTensor can be printed as string
trans.__repr__()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

self.assertEqual(expected_output.size(), output.size())
torch.testing.assert_close(output, expected_output)

def test_color_jitter(self):
color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

Expand Down Expand Up @@ -613,6 +559,60 @@ def test_autoaugment(self):
transform.__repr__()


@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:

def test_accimage_to_tensor(self):
trans = transforms.ToTensor()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

torch.testing.assert_close(output, expected_output)

def test_accimage_pil_to_tensor(self):
trans = transforms.PILToTensor()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

assert expected_output.size() == output.size()
torch.testing.assert_close(output, expected_output, check_stride=False)

def test_accimage_resize(self):
trans = transforms.Compose([
transforms.Resize(256, interpolation=Image.LINEAR),
transforms.ToTensor(),
])

# Checking if Compose, Resize and ToTensor can be printed as string
trans.__repr__()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

assert expected_output.size() == output.size()
assert np.abs((expected_output - output).mean()) < 1e-3
assert (expected_output - output).var() < 1e-5
# note the high absolute tolerance
torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

def test_accimage_crop(self):
trans = transforms.Compose([
transforms.CenterCrop(256),
transforms.ToTensor(),
])

# Checking if Compose, CenterCrop and ToTensor can be printed as string
trans.__repr__()

expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
output = trans(accimage.Image(GRACE_HOPPER))

assert expected_output.size() == output.size()
torch.testing.assert_close(output, expected_output)


@pytest.mark.parametrize('channels', [1, 3, 4])
def test_to_tensor(channels):
height, width = 4, 4
Expand Down