-
-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Closed
Description
No matter the arch/encoder combination i seem to always get errors on trying to export the model to executorch:
Windows 10
pytorch 3.9.0 (with or without CUDA 13.8)
python 3.12
i tried FPN/unet and efficient/mobilenet among other combinations
Also running inside Visual Studio Developer Powershell as descriped
import torch
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
from executorch.exir import to_edge_transform_and_lower
import segmentation_models_pytorch as smp
# first train model and do save_pretrained('./model')
model = smp.from_pretrained('./model').eval()
sample_inputs = (torch.randn(1, 3, 256, 256), )
et_program = to_edge_transform_and_lower(
torch.export.export(model, sample_inputs),
partitioner=[XnnpackPartitioner()]
).to_executorch()
with open("xnnpack.pte", "wb") as f:
f.write(et_program.buffer)Loading weights from local directory
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Error while creating guard:
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Name: ''
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Source: shape_env
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Create Function: SHAPE_ENV
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Guard Types: ['SHAPE_ENV', 'SHAPE_ENV', 'SHAPE_ENV', 'SHAPE_ENV', 'SHAPE_ENV', 'SHAPE_ENV', 'SHAPE_ENV', 'SHAPE_ENV', 'SHAPE_ENV']
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Code List: ["L['x'].size()[0] == 1", "L['x'].size()[1] == 3", "L['x'].size()[2] == 4", "L['x'].size()[3] == 4", "L['x'].stride()[0] == 48", "L['x'].stride()[1] == 16", "L['x'].stride()[2] == 4", "L['x'].stride()[3] == 1", "L['x'].storage_offset() == 0"]
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Object Weakref: None
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Guarded Class Weakref: None
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] Traceback (most recent call last):
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_guards.py", line 366, in create
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] return self.create_fn(builder, self)
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\guards.py", line 2671, in SHAPE_ENV
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] clib = CppCodeCache.load(func_str)
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\codecache.py", line 2839, in load
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] return cls.load_async(*args, **kwargs)()
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\codecache.py", line 2705, in load_async
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] "vec_isa": pick_vec_isa(),
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 497, in pick_vec_isa
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] _valid_vec_isa_list: list[VecISA] = valid_vec_isa_list()
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 484, in valid_vec_isa_list
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] isa_list.extend(
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 487, in <genexpr>
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] if all(flag in _cpu_supported_x86_isa for flag in str(isa).split()) and isa
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 143, in __bool__
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] return self.__bool__impl(config.cpp.vec_isa_ok)
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 153, in __bool__impl
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] return self.check_build(VecISA._avx_code)
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 103, in check_build
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] extra=_get_isa_dry_compile_fingerprint(self._arch_flags),
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 29, in _get_isa_dry_compile_fingerprint
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] compiler_info = get_compiler_version_info(get_cpp_compiler())
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpp_builder.py", line 339, in get_cpp_compiler
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] check_msvc_cl_language_id(compiler)
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpp_builder.py", line 313, in check_msvc_cl_language_id
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] if not _is_msvc_cl(compiler):
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] ^^^^^^^^^^^^^^^^^^^^^
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpp_builder.py", line 431, in _is_msvc_cl
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] subprocess.check_output([cpp_compiler, "/help"], stderr=subprocess.STDOUT)
E1027 20:17:58.074000 12988 .venv\Lib\site-packages\torch\_guards.py:368] [0/0] UnicodeDecodeError: 'utf-8' codec can't decode byte 0x81 in position 62: invalid start byte
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] Created at:
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 773, in trace_frame
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] tracer = InstructionTranslator(
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\symbolic_convert.py", line 3847, in __init__
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] output=OutputGraph(
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\output_graph.py", line 508, in __init__
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] self.init_ambient_guards()
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\output_graph.py", line 668, in init_ambient_guards
E1027 20:17:58.078000 12988 .venv\Lib\site-packages\torch\_guards.py:370] [0/0] self.guards.add(ShapeEnvSource().make_guard(GuardBuilder.SHAPE_ENV))
Traceback (most recent call last):
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\fx\passes\infra\pass_manager.py", line 276, in __call__
res = fn(module)
^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\fx\passes\infra\pass_base.py", line 46, in __call__
res = self.call(graph_module)
^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\backends\xnnpack\_passes\convert_to_upsample_bilinear2d.py", line 55, in call
for pattern, align_corners in bilinear_2d.get_graphs_dict().items():
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\backends\xnnpack\partition\graphs\bilinear_2d.py", line 57, in get_graphs_dict
return _get_bilinear_2d_graphs()
^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\backends\xnnpack\partition\graphs\bilinear_2d.py", line 41, in _get_bilinear_2d_graphs
edge = exir.capture(
^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\capture\_capture.py", line 217, in capture
ep = export(mod, args, dynamic_shapes=dynamic_shapes, strict=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\__init__.py", line 311, in export
raise e
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\__init__.py", line 277, in export
return _export(
^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 1163, in wrapper
raise e
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 1129, in wrapper
ep = fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\exported_program.py", line 124, in wrapper
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 2255, in _export
ep = _export_for_training(
^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 1163, in wrapper
raise e
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 1129, in wrapper
ep = fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\exported_program.py", line 124, in wrapper
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 2071, in _export_for_training
export_artifact = export_func(
^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 1415, in _strict_export
gm_torch_level = _export_to_torch_ir(
^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\export\_trace.py", line 812, in _export_to_torch_ir
gm_torch_level, _ = torch._dynamo.export(
^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\eval_frame.py", line 2002, in inner
result_traced = opt_f(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\eval_frame.py", line 414, in __call__
return super().__call__(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\eval_frame.py", line 832, in compile_wrapper
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 1874, in __call__
result = self._torchdynamo_orig_backend(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 688, in __call__
result = _compile(
^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 1494, in _compile
raise InternalTorchDynamoError(
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 1433, in _compile
guarded_code, tracer_output = compile_inner(code, one_graph, hooks)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_utils_internal.py", line 92, in wrapper_function
return function(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 1117, in compile_inner
return _compile_inner(code, one_graph, hooks)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 1251, in _compile_inner
check_fn = dynamo_output.build_guards(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\convert_frame.py", line 856, in build_guards
return CheckFunctionManager(
^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\guards.py", line 3383, in __init__
builder, guard_manager = self.build_guards(
^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\guards.py", line 3674, in build_guards
guard.create(builder)
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_guards.py", line 366, in create
return self.create_fn(builder, self)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_dynamo\guards.py", line 2671, in SHAPE_ENV
clib = CppCodeCache.load(func_str)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\codecache.py", line 2839, in load
return cls.load_async(*args, **kwargs)()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\codecache.py", line 2705, in load_async
"vec_isa": pick_vec_isa(),
^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 497, in pick_vec_isa
_valid_vec_isa_list: list[VecISA] = valid_vec_isa_list()
^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 484, in valid_vec_isa_list
isa_list.extend(
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 487, in <genexpr>
if all(flag in _cpu_supported_x86_isa for flag in str(isa).split()) and isa
^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 143, in __bool__
return self.__bool__impl(config.cpp.vec_isa_ok)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 153, in __bool__impl
return self.check_build(VecISA._avx_code)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 103, in check_build
extra=_get_isa_dry_compile_fingerprint(self._arch_flags),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpu_vec_isa.py", line 29, in _get_isa_dry_compile_fingerprint
compiler_info = get_compiler_version_info(get_cpp_compiler())
^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpp_builder.py", line 339, in get_cpp_compiler
check_msvc_cl_language_id(compiler)
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpp_builder.py", line 313, in check_msvc_cl_language_id
if not _is_msvc_cl(compiler):
^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\_inductor\cpp_builder.py", line 431, in _is_msvc_cl
subprocess.check_output([cpp_compiler, "/help"], stderr=subprocess.STDOUT)
torch._dynamo.exc.InternalTorchDynamoError: UnicodeDecodeError: 'utf-8' codec can't decode byte 0x81 in position 62: invalid start byte
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "D:\cloud\machine learning\pytorch\edge-detection\export-execu.py", line 17, in <module>
et_program = to_edge_transform_and_lower(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\program\_program.py", line 114, in wrapper
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\program\_program.py", line 1371, in to_edge_transform_and_lower
edge_manager = edge_manager.to_backend(method_to_partitioner)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\program\_program.py", line 114, in wrapper
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\program\_program.py", line 1672, in to_backend
new_edge_programs = to_backend(method_to_programs_and_partitioners)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\eike\AppData\Roaming\uv\python\cpython-3.12.8-windows-x86_64-none\Lib\functools.py", line 909, in wrapper
return dispatch(args[0].__class__)(*args, **kw)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\backend\backend_api.py", line 762, in _
lower_all_submodules_to_backend(
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\backend\backend_api.py", line 591, in lower_all_submodules_to_backend
backend_name_to_subclass[backend_id].preprocess_multimethod(
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\backend\backend_details.py", line 129, in preprocess_multimethod
preprocess_result = cls.preprocess(program, compile_spec_for_program)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\backends\xnnpack\xnnpack_preprocess.py", line 139, in preprocess
ep = XNNPACKPassManager(ep, passes=passes).transform()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\backends\xnnpack\_passes\__init__.py", line 94, in transform
ep = _transform(ep, transform_pass)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\program\_program.py", line 244, in _transform
return _transform_with_pass_manager(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\executorch\exir\program\_program.py", line 266, in _transform_with_pass_manager
res = pass_manager(self.graph_module)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\cloud\machine learning\pytorch\edge-detection\.venv\Lib\site-packages\torch\fx\passes\infra\pass_manager.py", line 302, in __call__
raise Exception(msg) from e # noqa: TRY002
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Exception: An error occurred when running the 'ConvertToUpsampleBilinear2d' pass after the following passes: []
Metadata
Metadata
Assignees
Labels
No labels