|
| 1 | +.. _recipes: |
| 2 | + |
| 3 | +******************** |
| 4 | +Our Favorite Recipes |
| 5 | +******************** |
| 6 | + |
| 7 | +Here is a collection of short tutorials, examples and code snippets |
| 8 | +that illustrate some of the useful idioms and tricks to make snazzier |
| 9 | +figures and overcome some matplotlib warts. |
| 10 | + |
| 11 | +Fixing common date annoyances |
| 12 | +============================= |
| 13 | + |
| 14 | +matplotlib allows you to natively plots python datetime instances, and |
| 15 | +for the most part does a good job picking tick locations and string |
| 16 | +formats. There are a couple of things it does not handle so |
| 17 | +gracefully, and here are some tricks to help you work around them. |
| 18 | +We'll load up some sample date data which contains datetime.date |
| 19 | +objects in a numpy record array:: |
| 20 | + |
| 21 | + In [63]: datafile = cbook.get_sample_data('goog.npy') |
| 22 | + |
| 23 | + In [64]: r = np.load(datafile).view(np.recarray) |
| 24 | + |
| 25 | + In [65]: r.dtype |
| 26 | + Out[65]: dtype([('date', '|O4'), ('', '|V4'), ('open', '<f8'), ('high', '<f8'), ('low', '<f8'), ('close', '<f8'), ('volume', '<i8'), ('adj_close', '<f8')]) |
| 27 | + |
| 28 | + In [66]: r.date |
| 29 | + Out[66]: |
| 30 | + array([2004-08-19, 2004-08-20, 2004-08-23, ..., 2008-10-10, 2008-10-13, |
| 31 | + 2008-10-14], dtype=object) |
| 32 | + |
| 33 | +The dtype of the numpy record array for the field 'date' is '|O4' |
| 34 | +which means it is a 4-byte python object pointer; in this case the |
| 35 | +objects are datetime.date instances, which we can see when we print |
| 36 | +some samples in the ipython terminal window. |
| 37 | +
|
| 38 | +If you plot the data, you will see that the x tick labels are all |
| 39 | +squashed together:: |
| 40 | + |
| 41 | + In [67]: plot(r.date, r.close) |
| 42 | + Out[67]: [<matplotlib.lines.Line2D object at 0x92a6b6c>] |
| 43 | + |
| 44 | +.. plot:: |
| 45 | + |
| 46 | + import matplotlib.cbook as cbook |
| 47 | + datafile = cbook.get_sample_data('goog.npy') |
| 48 | + r = np.load(datafile).view(np.recarray) |
| 49 | + plt.figure() |
| 50 | + plt.plot(r.date, r.close) |
| 51 | + plt.show() |
| 52 | + |
| 53 | +Another annoyance is that if you hover the mouse over a the window and |
| 54 | +look in the lower right corner of the matplotlib toolbar at the x and |
| 55 | +y coordinates, you see that the x locations are formatted the same way |
| 56 | +the tick labels are, eg "Dec 2004". What we'd like is for the |
| 57 | +location in the toolbar to have a higher degree of precision, eg |
| 58 | +giving us the exact date out mouse is hovering over. To fix the first |
| 59 | +problem, we can use method:`matplotlib.figure.Figure.autofmt_xdate()` |
| 60 | +and to fix the second problem we can use the ``ax.fmt_xdata`` |
| 61 | +attribute which can be set to any function that takes a position and |
| 62 | +returns a string. matplotlib has a number of date formatters built |
| 63 | +im, so we'll use one of those. |
| 64 | + |
| 65 | +.. plot:: |
| 66 | + |
| 67 | + |
| 68 | + import matplotlib.cbook as cbook |
| 69 | + datafile = cbook.get_sample_data('goog.npy') |
| 70 | + r = np.load(datafile).view(np.recarray) |
| 71 | + fig, ax = plt.subplots(1) |
| 72 | + ax.plot(r.date, r.close) |
| 73 | + |
| 74 | + # rotate and align the tick labels so they look better |
| 75 | + fig.autofmt_xdate() |
| 76 | + |
| 77 | + # use a more precise date string for the x axis locations in the |
| 78 | + # toolbar |
| 79 | + import matplotlib.dates as mdates |
| 80 | + ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') |
| 81 | + |
| 82 | + |
| 83 | + |
| 84 | +Fill Between and Alpha |
| 85 | +====================== |
| 86 | + |
| 87 | +The :method:`~matplotlib.axes.Axes.fill_between` function generates a |
| 88 | +shaded region between a min and max boundary that is useful for |
| 89 | +illustrating ranges. It has a very handy ``where`` argument to |
| 90 | +combine filling with logical ranges, eg to just fill in a curve over |
| 91 | +some threshold value. |
| 92 | + |
| 93 | +At it's most basic level, ``fill_between`` can be use to enhance a |
| 94 | +graphs visual appearance. Let's compare two graphs of a financial |
| 95 | +times with a simple line plot on the left and a filled line on the |
| 96 | +right. |
| 97 | + |
| 98 | +.. plot:: |
| 99 | + :include-source: |
| 100 | + |
| 101 | + import matplotlib.cbook as cbook |
| 102 | + |
| 103 | + # load up some sample financial data |
| 104 | + datafile = cbook.get_sample_data('goog.npy') |
| 105 | + r = np.load(datafile).view(np.recarray) |
| 106 | + |
| 107 | + # create two subplots with the shared x and y axes |
| 108 | + fig, (ax1, ax2) = plt.subplots(1,2, sharex=True, sharey=True) |
| 109 | + |
| 110 | + pricemin = r.close.min() |
| 111 | + |
| 112 | + ax1.plot(r.date, r.close, lw=2) |
| 113 | + ax2.fill_between(r.date, pricemin, r.close, facecolor='blue', alpha=0.5) |
| 114 | + |
| 115 | + for ax in ax1, ax2: |
| 116 | + ax.grid(True) |
| 117 | + |
| 118 | + ax1.set_ylabel('price') |
| 119 | + fig.suptitle('Google (GOOG) daily closing price') |
| 120 | + fig.autofmt_xdate() |
| 121 | + plt.show() |
| 122 | + |
| 123 | +The alpha channel is not necessary here, but it can be used to soften |
| 124 | +colors for more visually appealing plots. In other examples, as we'll |
| 125 | +see below, the alpha channel is functionally useful as the shaded |
| 126 | +regions can overlap and alpha allows you to see both. Note that the |
| 127 | +postscript format does not support alpha (this is a postscript |
| 128 | +limitation, not a matplotlib limitation), so when using alpha save |
| 129 | +your figures in PNG, PDF or SVG. |
| 130 | + |
| 131 | +Our next example computes two populations of random walkers with a |
| 132 | +different mean and standard deviation of the normal distributions from |
| 133 | +which there steps are drawn. We use shared regions to plot +/- one |
| 134 | +standard deviation of the mean position of the population. Here the |
| 135 | +alpha channel is useful, not just aesthetic. |
| 136 | + |
| 137 | +.. plot:: |
| 138 | + :include-source: |
| 139 | + |
| 140 | + Nsteps, Nwalkers = 100, 250 |
| 141 | + t = np.arange(Nsteps) |
| 142 | + |
| 143 | + # an Nsteps x Nwalkers array of random walk steps |
| 144 | + S1 = 0.002 + 0.01*np.random.randn(Nsteps, Nwalkers) |
| 145 | + S2 = 0.004 + 0.02*np.random.randn(Nsteps, Nwalkers) |
| 146 | + |
| 147 | + # an Nsteps x Nwalkers array of random walker positions |
| 148 | + X1 = S1.cumsum(axis=0) |
| 149 | + X2 = S2.cumsum(axis=0) |
| 150 | + |
| 151 | + |
| 152 | + # Nsteps length arrays empirical means and standard deviations of both |
| 153 | + # populations over time |
| 154 | + mu1 = X1.mean(axis=1) |
| 155 | + sigma1 = X1.std(axis=1) |
| 156 | + mu2 = X2.mean(axis=1) |
| 157 | + sigma2 = X2.std(axis=1) |
| 158 | + |
| 159 | + # plot it! |
| 160 | + fig, ax = plt.subplots(1) |
| 161 | + ax.plot(t, mu1, lw=2, label='mean population 1', color='blue') |
| 162 | + ax.plot(t, mu1, lw=2, label='mean population 2', color='yellow') |
| 163 | + ax.fill_between(t, mu1+sigma1, mu1-sigma1, facecolor='blue', alpha=0.5) |
| 164 | + ax.fill_between(t, mu2+sigma2, mu2-sigma2, facecolor='yellow', alpha=0.5) |
| 165 | + ax.set_title('random walkers empirical $\mu$ and $\pm \sigma$ interval') |
| 166 | + ax.legend(loc='upper left') |
| 167 | + ax.set_xlabel('num steps') |
| 168 | + ax.set_ylabel('position') |
| 169 | + ax.grid() |
| 170 | + plt.show() |
| 171 | + |
| 172 | + |
| 173 | + |
| 174 | +The where keyword argument is very handy for highlighting certain |
| 175 | +regions of the graph. Where takes a boolean mask the same length as |
| 176 | +the x, ymin and ymax arguments, and only fills in the region where the |
| 177 | +boolean mask is True. In the example below, we take a a single random |
| 178 | +walker and compute the analytic mean and standard deviation of the |
| 179 | +population positions. The population mean is shown as the black |
| 180 | +dashed line, and the plus/minus one sigma deviation from the mean is |
| 181 | +showsn as the yellow filled region. We use the where mask |
| 182 | +``X>upper_bound`` to find the region where the walker is above the |
| 183 | +one sigma boundary, and shade that region blue. |
| 184 | + |
| 185 | +.. plot:: |
| 186 | + :include-source: |
| 187 | + |
| 188 | + np.random.seed(1234) |
| 189 | + |
| 190 | + Nsteps = 500 |
| 191 | + t = np.arange(Nsteps) |
| 192 | + |
| 193 | + mu = 0.002 |
| 194 | + sigma = 0.01 |
| 195 | + |
| 196 | + # the steps and position |
| 197 | + S = mu + sigma*np.random.randn(Nsteps) |
| 198 | + X = S.cumsum() |
| 199 | + |
| 200 | + # the 1 sigma upper and lower population bounds |
| 201 | + lower_bound = mu*t - sigma*np.sqrt(t) |
| 202 | + upper_bound = mu*t + sigma*np.sqrt(t) |
| 203 | + |
| 204 | + fig, ax = plt.subplots(1) |
| 205 | + ax.plot(t, X, lw=2, label='walker position', color='blue') |
| 206 | + ax.plot(t, mu*t, lw=1, label='population mean', color='black', ls='--') |
| 207 | + ax.fill_between(t, lower_bound, upper_bound, facecolor='yellow', alpha=0.5, |
| 208 | + label='1 sigma range') |
| 209 | + ax.legend(loc='upper left') |
| 210 | + |
| 211 | + # here we use the where argument to only fill the region where the |
| 212 | + # walker is above the population 1 sigma boundary |
| 213 | + ax.fill_between(t, upper_bound, X, where=X>upper_bound, facecolor='blue', alpha=0.5) |
| 214 | + ax.set_xlabel('num steps') |
| 215 | + ax.set_ylabel('position') |
| 216 | + ax.grid() |
| 217 | + plt.show() |
| 218 | + |
| 219 | + |
| 220 | +Another handy use of filled regions is to highlight horizontal or |
| 221 | +vertical spans of an axes -- for that matplotlib has some helper |
| 222 | +functions :method:`~matplotlib.axes.Axes.axhspan` and |
| 223 | +:method:`~matplotlib.axes.Axes.axvspan` and example |
| 224 | +:ref:`pylab_examples-axhspan_demo`. |
0 commit comments