|
| 1 | +#!/usr/bin/python3 |
| 2 | +""" |
| 3 | +We run a preorder depth first search on the root of a binary tree. |
| 4 | +
|
| 5 | +At each node in this traversal, we output D dashes (where D is the depth of this |
| 6 | +node), then we output the value of this node. (If the depth of a node is D, the |
| 7 | +depth of its immediate child is D+1. The depth of the root node is 0.) |
| 8 | +
|
| 9 | +If a node has only one child, that child is guaranteed to be the left child. |
| 10 | +
|
| 11 | +Given the output S of this traversal, recover the tree and return its root. |
| 12 | +
|
| 13 | +
|
| 14 | +Example 1: |
| 15 | +Input: "1-2--3--4-5--6--7" |
| 16 | +Output: [1,2,5,3,4,6,7] |
| 17 | +
|
| 18 | +Example 2: |
| 19 | +Input: "1-2--3---4-5--6---7" |
| 20 | +Output: [1,2,5,3,null,6,null,4,null,7] |
| 21 | +
|
| 22 | +
|
| 23 | +Example 3: |
| 24 | +Input: "1-401--349---90--88" |
| 25 | +Output: [1,401,null,349,88,90] |
| 26 | +
|
| 27 | +
|
| 28 | +Note: |
| 29 | +The number of nodes in the original tree is between 1 and 1000. |
| 30 | +Each node will have a value between 1 and 10^9. |
| 31 | +""" |
| 32 | + |
| 33 | + |
| 34 | +# Definition for a binary tree node. |
| 35 | +class TreeNode: |
| 36 | + def __init__(self, x): |
| 37 | + self.val = x |
| 38 | + self.left = None |
| 39 | + self.right = None |
| 40 | + |
| 41 | +from collections import OrderedDict |
| 42 | + |
| 43 | + |
| 44 | +class Solution: |
| 45 | + def recoverFromPreorder(self, S: str) -> TreeNode: |
| 46 | + """ |
| 47 | + map: node -> depth |
| 48 | + stack of pi (incompleted) |
| 49 | + """ |
| 50 | + depth = 0 |
| 51 | + # parse |
| 52 | + n = len(S) |
| 53 | + i = 0 |
| 54 | + root = None |
| 55 | + stk = [] |
| 56 | + while i < n: |
| 57 | + if S[i] == "-": |
| 58 | + depth += 1 |
| 59 | + i += 1 |
| 60 | + else: |
| 61 | + j = i |
| 62 | + while j < n and S[j] != "-": |
| 63 | + j += 1 |
| 64 | + |
| 65 | + val = int(S[i:j]) |
| 66 | + |
| 67 | + # construct |
| 68 | + cur = TreeNode(val) |
| 69 | + if depth == 0: |
| 70 | + root = cur |
| 71 | + stk = [(depth, root)] |
| 72 | + else: |
| 73 | + assert stk |
| 74 | + while stk[-1][0] != depth - 1: |
| 75 | + stk.pop() |
| 76 | + |
| 77 | + _, pi = stk[-1] |
| 78 | + if not pi.left: |
| 79 | + pi.left = cur |
| 80 | + elif not pi.right: |
| 81 | + pi.right = cur |
| 82 | + stk.pop() |
| 83 | + else: |
| 84 | + raise |
| 85 | + stk.append((depth, cur)) |
| 86 | + |
| 87 | + depth = 0 |
| 88 | + i = j |
| 89 | + |
| 90 | + return root |
| 91 | + |
| 92 | + def recoverFromPreorder_error(self, S: str) -> TreeNode: |
| 93 | + """ |
| 94 | + map: node -> depth |
| 95 | + stack of pi (incompleted) |
| 96 | + """ |
| 97 | + depth = 0 |
| 98 | + depths = OrderedDict() |
| 99 | + # parse |
| 100 | + n = len(S) |
| 101 | + i = 0 |
| 102 | + while i < n: |
| 103 | + if S[i] == "-": |
| 104 | + depth += 1 |
| 105 | + i += 1 |
| 106 | + else: |
| 107 | + j = i |
| 108 | + while j < n and S[j] != "-": |
| 109 | + j += 1 |
| 110 | + |
| 111 | + val = int(S[i:j]) |
| 112 | + depths[val] = depth |
| 113 | + depth = 0 |
| 114 | + i = j |
| 115 | + |
| 116 | + # construct |
| 117 | + stk = [] |
| 118 | + root = None |
| 119 | + for k, v in depths.items(): |
| 120 | + cur = TreeNode(k) |
| 121 | + if v == 0: |
| 122 | + root = cur |
| 123 | + stk = [root] |
| 124 | + else: |
| 125 | + assert stk |
| 126 | + while depths[stk[-1].val] != v - 1: |
| 127 | + stk.pop() |
| 128 | + |
| 129 | + if not stk[-1].left: |
| 130 | + stk[-1].left = cur |
| 131 | + elif not stk[-1].right: |
| 132 | + stk[-1].right = cur |
| 133 | + stk.pop() |
| 134 | + else: |
| 135 | + raise |
| 136 | + stk.append(cur) |
| 137 | + |
| 138 | + return root |
| 139 | + |
| 140 | + |
| 141 | +if __name__ == "__main__": |
| 142 | + assert Solution().recoverFromPreorder("5-4--4") |
| 143 | + assert Solution().recoverFromPreorder("1-2--3--4-5--6--7") |
0 commit comments