|
| 1 | +#!/usr/bin/python3 |
| 2 | +""" |
| 3 | +Given a 2D array A, each cell is 0 (representing sea) or 1 (representing land) |
| 4 | +
|
| 5 | +A move consists of walking from one land square 4-directionally to another land |
| 6 | +square, or off the boundary of the grid. |
| 7 | +
|
| 8 | +Return the number of land squares in the grid for which we cannot walk off the |
| 9 | +boundary of the grid in any number of moves. |
| 10 | +
|
| 11 | +Example 1: |
| 12 | +Input: [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]] |
| 13 | +Output: 3 |
| 14 | +Explanation: |
| 15 | +There are three 1s that are enclosed by 0s, and one 1 that isn't enclosed |
| 16 | +because its on the boundary. |
| 17 | +
|
| 18 | +Example 2: |
| 19 | +Input: [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]] |
| 20 | +Output: 0 |
| 21 | +Explanation: |
| 22 | +All 1s are either on the boundary or can reach the boundary. |
| 23 | +
|
| 24 | +Note: |
| 25 | +1 <= A.length <= 500 |
| 26 | +1 <= A[i].length <= 500 |
| 27 | +0 <= A[i][j] <= 1 |
| 28 | +All rows have the same size. |
| 29 | +""" |
| 30 | +from typing import List |
| 31 | + |
| 32 | + |
| 33 | +dirs = ((0, -1), (0, 1), (1, 0), (-1, 0)) |
| 34 | + |
| 35 | + |
| 36 | +class Solution: |
| 37 | + def numEnclaves(self, A: List[List[int]]) -> int: |
| 38 | + """ |
| 39 | + not dfs from any cell, but dfs from the edges |
| 40 | + """ |
| 41 | + m, n = len(A), len(A[0]) |
| 42 | + visited = [[False for _ in range(n)] for _ in range(m)] |
| 43 | + for i in range(m): |
| 44 | + for j in range(n): |
| 45 | + if not visited[i][j] and A[i][j] == 1 and (i == 0 or j == 0 or i == m - 1 or j == n - 1): |
| 46 | + self.dfs(A, i, j, visited) |
| 47 | + |
| 48 | + ret = 0 |
| 49 | + for i in range(m): |
| 50 | + for j in range(n): |
| 51 | + if A[i][j] == 1 and not visited[i][j]: |
| 52 | + ret += 1 |
| 53 | + return ret |
| 54 | + |
| 55 | + def dfs(self, A, i, j, visited): |
| 56 | + m, n = len(A), len(A[0]) |
| 57 | + visited[i][j] = True |
| 58 | + for di, dj in dirs: |
| 59 | + I = i + di |
| 60 | + J = j + dj |
| 61 | + if 0 <= I < m and 0 <= J < n and not visited[I][J] and A[I][J] == 1: |
| 62 | + self.dfs(A, I, J, visited) |
| 63 | + |
| 64 | + |
| 65 | +class SolutionError: |
| 66 | + def __init__(self): |
| 67 | + self.ret = 0 |
| 68 | + |
| 69 | + def numEnclaves(self, A: List[List[int]]) -> int: |
| 70 | + """ |
| 71 | + dfs coloring |
| 72 | + """ |
| 73 | + m, n = len(A), len(A[0]) |
| 74 | + visited = [[None for _ in range(n)] for _ in range(m)] # 0 not off, 1 off |
| 75 | + for i in range(m): |
| 76 | + for j in range(n): |
| 77 | + if not visited[i][j] and A[i][j] == 1: |
| 78 | + self.dfs(A, i, j, visited) |
| 79 | + return self.ret |
| 80 | + |
| 81 | + def dfs(self, A, i, j, visited): |
| 82 | + m, n = len(A), len(A[0]) |
| 83 | + visited[i][j] = 0 |
| 84 | + for di, dj in dirs: |
| 85 | + I = i + di |
| 86 | + J = j + dj |
| 87 | + if not (0 <= I < m and 0 <= J < n): |
| 88 | + visited[i][j] = 1 |
| 89 | + return True |
| 90 | + if visited[I][J] == 1: |
| 91 | + visited[i][j] = 1 |
| 92 | + return True |
| 93 | + if visited[I][J] is None and A[I][J] == 1 and self.dfs(A, I, J, visited): |
| 94 | + visited[i][j] = 1 |
| 95 | + return True |
| 96 | + |
| 97 | + self.ret += 1 |
| 98 | + return False |
0 commit comments