Predict US Visa application approval using Machine Learning & deploy via AWS CI/CD
The US Visa Prediction Project predicts whether a US visa application will be approved or denied using Machine Learning techniques.
It analyzes historical visa data to identify key factors influencing visa approval decisions.
- Predict approval/denial of US visa applications
- Identify important features impacting visa approval
- Provide insights for applicants and organizations
- Data Cleaning & Preprocessing
- Exploratory Data Analysis (EDA)
- Feature Engineering
- Machine Learning Model Training
- Model Evaluation & Visualization
- Web/App Interface for Prediction (optional)
Tool | Link |
---|---|
Anaconda | Download |
VS Code | Download |
Git | Download |
- MongoDB: Login
- Kaggle Dataset: EasyVisa Dataset
1. constant
2. config_entity
3. artifact_entity
4. component
5. pipeline
6. app.py / demo.py
git clone https://github.com/rayhanhcse/Machine-Learning-Project.git
cd Machine-Learning-Project
conda create -n visa python=3.8 -y
conda activate visa
pip install -r requirements.txt
Replace with your actual keys/URLs
export MONGODB_URL="your_mongodb_url"
export AWS_ACCESS_KEY_ID="your_aws_access_key_id"
export AWS_SECRET_ACCESS_KEY="your_aws_secret_access_key"
-
Permissions required:
- EC2 Full Access
- ECR Full Access
Deployment Steps:
- Build Docker image of source code
- Push Docker image to ECR
- Launch EC2 instance
- Pull Docker image from ECR
- Run Docker image on EC2
- Save URI:
315865595366.dkr.ecr.us-east-1.amazonaws.com/usvisarepo
sudo apt-get update -y
sudo apt-get upgrade -y
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu
newgrp docker
- Go to GitHub → Settings → Actions → Runners → New self-hosted runner
- Choose OS and follow commands
Secret Name | Description |
---|---|
AWS_ACCESS_KEY_ID | AWS Access Key |
AWS_SECRET_ACCESS_KEY | AWS Secret Key |
AWS_DEFAULT_REGION | AWS Region (e.g., us-east-1) |
ECR_REPO | ECR Repository URI |
MONGODB_URL | MongoDB Connection URL |
Rayhan Hussain 📧 Email: rayhanhcse@gmail.com 🌐 GitHub: rayhanhcse 💼 LinkedIn: rayhanchse