|
1 | | -#pragma once |
2 | | - |
3 | | -// Utilities used in examples. |
4 | | - |
5 | | -#include <algorithm> |
6 | | -#include <cmath> |
7 | | -#include <vector> |
8 | | - |
9 | | -#include "components/color.hpp" |
10 | | -#include "components/position3d.hpp" |
11 | | - |
12 | | -namespace rerun { |
13 | | - namespace demo { |
14 | | - constexpr float PI = 3.14159265358979323846264338327950288f; |
15 | | - constexpr float TAU = 6.28318530717958647692528676655900577f; |
16 | | - |
17 | | - /// A linear interpolator that bounces between `a` and `b` as `t` goes above `1.0`. |
18 | | - inline float bounce_lerp(float a, float b, float t) { |
19 | | - auto tf = t - floorf(t); |
20 | | - if (static_cast<int32_t>(t) % 2 == 0) { |
21 | | - return (1.0f - tf) * a + tf * b; |
22 | | - } else { |
23 | | - return tf * a + (1.0f - tf) * b; |
24 | | - } |
25 | | - } |
26 | | - |
27 | | - /// Linearly interpolates from `a` through `b` in `n` steps, returning the intermediate result at |
28 | | - /// each step. |
29 | | - template <typename T> |
30 | | - inline std::vector<T> linspace(T start, T end, size_t num) { |
31 | | - std::vector<T> linspaced(num); |
32 | | - std::generate(linspaced.begin(), linspaced.end(), [&, i = 0]() mutable { |
33 | | - return static_cast<T>(start + static_cast<T>(i++) * (end - start) / static_cast<T>(num - 1)); |
34 | | - }); |
35 | | - return linspaced; |
36 | | - } |
37 | | - |
38 | | - /// Given two 3D vectors `from` and `to`, linearly interpolates between them in `n` steps along |
39 | | - /// the three axes, returning the intermediate result at each step. |
40 | | - template <typename T, typename Elem> |
41 | | - std::vector<T> grid(std::array<Elem, 3> from, std::array<Elem, 3> to, size_t n) { |
42 | | - std::vector<T> output; |
43 | | - for (Elem z : linspace(from[0], to[0], n)) { |
44 | | - for (Elem y : linspace(from[1], to[1], n)) { |
45 | | - for (Elem x : linspace(from[2], to[2], n)) { |
46 | | - output.emplace_back( |
47 | | - static_cast<Elem>(x), |
48 | | - static_cast<Elem>(y), |
49 | | - static_cast<Elem>(z) |
50 | | - ); |
51 | | - } |
52 | | - } |
53 | | - } |
54 | | - return output; |
55 | | - } |
56 | | - |
57 | | - /// Create a spiral of points with colors along the Z axis. |
58 | | - /// |
59 | | - /// * `num_points`: Total number of points. |
60 | | - /// * `radius`: The radius of the spiral. |
61 | | - /// * `angular_step`: The factor applied between each step along the trigonometric circle. |
62 | | - /// * `angular_offset`: Offsets the starting position on the trigonometric circle. |
63 | | - /// * `z_step`: The factor applied between between each step along the Z axis. |
64 | | - void color_spiral( |
65 | | - size_t num_points, float radius, float angular_step, float angular_offset, float z_step, |
66 | | - std::vector<components::Position3D>& out_points, |
67 | | - std::vector<components::Color>& out_colors |
68 | | - ); |
69 | | - |
70 | | - /// Returns sRGB polynomial approximation from Turbo color map, assuming `t` is normalized. |
71 | | - rerun::components::Color colormap_turbo_srgb(float t); |
72 | | - } // namespace demo |
73 | | -} // namespace rerun |
| 1 | +#pragma once |
| 2 | + |
| 3 | +// Utilities used in examples. |
| 4 | + |
| 5 | +#include <algorithm> |
| 6 | +#include <cmath> |
| 7 | +#include <vector> |
| 8 | + |
| 9 | +#include "components/color.hpp" |
| 10 | +#include "components/position3d.hpp" |
| 11 | + |
| 12 | +namespace rerun { |
| 13 | + namespace demo { |
| 14 | + constexpr float PI = 3.14159265358979323846264338327950288f; |
| 15 | + constexpr float TAU = 6.28318530717958647692528676655900577f; |
| 16 | + |
| 17 | + /// A linear interpolator that bounces between `a` and `b` as `t` goes above `1.0`. |
| 18 | + inline float bounce_lerp(float a, float b, float t) { |
| 19 | + auto tf = t - floorf(t); |
| 20 | + if (static_cast<int32_t>(t) % 2 == 0) { |
| 21 | + return (1.0f - tf) * a + tf * b; |
| 22 | + } else { |
| 23 | + return tf * a + (1.0f - tf) * b; |
| 24 | + } |
| 25 | + } |
| 26 | + |
| 27 | + /// Linearly interpolates from `a` through `b` in `n` steps, returning the intermediate result at |
| 28 | + /// each step. |
| 29 | + template <typename T> |
| 30 | + inline std::vector<T> linspace(T start, T end, size_t num) { |
| 31 | + std::vector<T> linspaced(num); |
| 32 | + std::generate(linspaced.begin(), linspaced.end(), [&, i = 0]() mutable { |
| 33 | + return static_cast<T>(start + static_cast<T>(i++) * (end - start) / static_cast<T>(num - 1)); |
| 34 | + }); |
| 35 | + return linspaced; |
| 36 | + } |
| 37 | + |
| 38 | + /// Given two 3D vectors `from` and `to`, linearly interpolates between them in `n` steps along |
| 39 | + /// the three axes, returning the intermediate result at each step. |
| 40 | + template <typename T, typename Elem> |
| 41 | + std::vector<T> grid(std::array<Elem, 3> from, std::array<Elem, 3> to, size_t n) { |
| 42 | + std::vector<T> output; |
| 43 | + for (Elem z : linspace(from[0], to[0], n)) { |
| 44 | + for (Elem y : linspace(from[1], to[1], n)) { |
| 45 | + for (Elem x : linspace(from[2], to[2], n)) { |
| 46 | + output.emplace_back( |
| 47 | + static_cast<Elem>(x), |
| 48 | + static_cast<Elem>(y), |
| 49 | + static_cast<Elem>(z) |
| 50 | + ); |
| 51 | + } |
| 52 | + } |
| 53 | + } |
| 54 | + return output; |
| 55 | + } |
| 56 | + |
| 57 | + /// Create a spiral of points with colors along the Z axis. |
| 58 | + /// |
| 59 | + /// * `num_points`: Total number of points. |
| 60 | + /// * `radius`: The radius of the spiral. |
| 61 | + /// * `angular_step`: The factor applied between each step along the trigonometric circle. |
| 62 | + /// * `angular_offset`: Offsets the starting position on the trigonometric circle. |
| 63 | + /// * `z_step`: The factor applied between between each step along the Z axis. |
| 64 | + void color_spiral( |
| 65 | + size_t num_points, float radius, float angular_step, float angular_offset, float z_step, |
| 66 | + std::vector<components::Position3D>& out_points, |
| 67 | + std::vector<components::Color>& out_colors |
| 68 | + ); |
| 69 | + |
| 70 | + /// Returns sRGB polynomial approximation from Turbo color map, assuming `t` is normalized. |
| 71 | + rerun::components::Color colormap_turbo_srgb(float t); |
| 72 | + } // namespace demo |
| 73 | +} // namespace rerun |
0 commit comments