-
Notifications
You must be signed in to change notification settings - Fork 447
Open
Description
Hi,
I was reviewing the DeepCoder training bash script and logs and noticed it used 8 NVIDIA A100-SXM4-80GB GPUs. I am training Qwen3-14B with rLLM in an 8-turn multi-turn setup. I am using a similar configuration on 8 A100 80GB GPUs.
However, I am encountering CUDA OOM errors even with small micro and mini-batch sizes. Could this be due to the multi-turn setup? Are 8 A100 80GB GPUs sufficient to train the Qwen3-14B model? Do I need to adjust anything to use GRPO+?
Any advice would be greatly appreciated. I have attached part of the bash script for reference.
Thank you.
algorithm.adv_estimator=grpo \
data.train_batch_size=8 \
data.val_batch_size=8 \
data.max_prompt_length=8192 \
data.max_response_length=8192 \
actor_rollout_ref.model.path=$MODEL_PATH \
actor_rollout_ref.hybrid_engine=True \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.loss_agg_mode=seq-mean-token-mean \
actor_rollout_ref.actor.ppo_mini_batch_size=8 \
actor_rollout_ref.actor.ppo_micro_batch_size=8 \
actor_rollout_ref.actor.ppo_epochs=1 \
actor_rollout_ref.actor.use_dynamic_bsz=True \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=16384 \
actor_rollout_ref.actor.use_kl_loss=False \
actor_rollout_ref.actor.kl_loss_coef=0 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.ulysses_sequence_parallel_size=2 \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.actor.grad_clip=1.0 \
actor_rollout_ref.actor.clip_ratio_low=0.2 \
actor_rollout_ref.actor.clip_ratio_high=0.28 \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.mode="async" \
actor_rollout_ref.rollout.chat_scheduler=verl.schedulers.completions_scheduler.CompletionsScheduler \
actor_rollout_ref.rollout.enforce_eager=False \
actor_rollout_ref.rollout.temperature=0.6 \
actor_rollout_ref.rollout.top_p=0.95 \
actor_rollout_ref.rollout.top_k=20 \
actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
actor_rollout_ref.rollout.n=8 \
actor_rollout_ref.rollout.val_kwargs.n=2 \
actor_rollout_ref.rollout.val_kwargs.temperature=0.6 \
actor_rollout_ref.rollout.val_kwargs.top_p=0.95 \
actor_rollout_ref.rollout.val_kwargs.top_k=20 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=1 \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1 \
algorithm.kl_ctrl.kl_coef=0.001 \
algorithm.mask_truncated_samples=True \
algorithm.clip_advantages=False \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.val_before_train=False \
trainer.n_gpus_per_node=8 \
trainer.nnodes=1 \
trainer.save_freq=5 \
trainer.test_freq=1 \
trainer.default_hdfs_dir=null \
trainer.max_actor_ckpt_to_keep=2 \
agent.use_stepwise_advantage=True \
agent.stepwise_advantage_mode="mc_return" \
trainer.total_epochs=500
Metadata
Metadata
Assignees
Labels
No labels