Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions docs/detection/utils/converters.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,3 +58,9 @@ status: new
</div>

:::supervision.detection.utils.converters.polygon_to_xyxy

<div class="md-typeset">
<h2><a href="#supervision.detection.utils.converters.xyxy_to_mask">xyxy_to_mask</a></h2>
</div>

:::supervision.detection.utils.converters.xyxy_to_mask
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
name = "supervision"
description = "A set of easy-to-use utils that will come in handy in any Computer Vision project"
license = { text = "MIT" }
version = "0.27.0rc1"
version = "0.27.0rc2"
readme = "README.md"
requires-python = ">=3.9"
authors = [
Expand Down
2 changes: 2 additions & 0 deletions supervision/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@
polygon_to_xyxy,
xcycwh_to_xyxy,
xywh_to_xyxy,
xyxy_to_mask,
xyxy_to_polygons,
xyxy_to_xcycarh,
xyxy_to_xywh,
Expand Down Expand Up @@ -249,6 +250,7 @@
"tint_image",
"xcycwh_to_xyxy",
"xywh_to_xyxy",
"xyxy_to_mask",
"xyxy_to_polygons",
"xyxy_to_xcycarh",
"xyxy_to_xywh",
Expand Down
64 changes: 64 additions & 0 deletions supervision/detection/utils/converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,6 +229,70 @@ def mask_to_xyxy(masks: np.ndarray) -> np.ndarray:
return xyxy


def xyxy_to_mask(boxes: np.ndarray, resolution_wh: tuple[int, int]) -> np.ndarray:
"""
Converts a 2D `np.ndarray` of bounding boxes into a 3D `np.ndarray` of bool masks.

Parameters:
boxes (np.ndarray): A 2D `np.ndarray` of shape `(N, 4)`
containing bounding boxes `(x_min, y_min, x_max, y_max)`
resolution_wh (Tuple[int, int]): A tuple `(width, height)` specifying
the resolution of the output masks

Returns:
np.ndarray: A 3D `np.ndarray` of shape `(N, height, width)`
containing 2D bool masks for each bounding box

Examples:
```python
import numpy as np
import supervision as sv

boxes = np.array([[0, 0, 2, 2]])

sv.xyxy_to_mask(boxes, (5, 5))
# array([
# [[ True, True, True, False, False],
# [ True, True, True, False, False],
# [ True, True, True, False, False],
# [False, False, False, False, False],
# [False, False, False, False, False]]
# ])

boxes = np.array([[0, 0, 1, 1], [3, 3, 4, 4]])

sv.xyxy_to_mask(boxes, (5, 5))
# array([
# [[ True, True, False, False, False],
# [ True, True, False, False, False],
# [False, False, False, False, False],
# [False, False, False, False, False],
# [False, False, False, False, False]],
#
# [[False, False, False, False, False],
# [False, False, False, False, False],
# [False, False, False, False, False],
# [False, False, False, True, True],
# [False, False, False, True, True]]
# ])
```
"""
width, height = resolution_wh
n = boxes.shape[0]
masks = np.zeros((n, height, width), dtype=bool)

for i, (x_min, y_min, x_max, y_max) in enumerate(boxes):
x_min = max(0, int(x_min))
y_min = max(0, int(y_min))
x_max = min(width - 1, int(x_max))
y_max = min(height - 1, int(y_max))

if x_max >= x_min and y_max >= y_min:
masks[i, y_min : y_max + 1, x_min : x_max + 1] = True

return masks


def mask_to_polygons(mask: np.ndarray) -> list[np.ndarray]:
"""
Converts a binary mask to a list of polygons.
Expand Down
172 changes: 172 additions & 0 deletions test/detection/utils/test_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from supervision.detection.utils.converters import (
xcycwh_to_xyxy,
xywh_to_xyxy,
xyxy_to_mask,
xyxy_to_xcycarh,
xyxy_to_xywh,
)
Expand Down Expand Up @@ -129,3 +130,174 @@ def test_xyxy_to_xcycarh(xyxy: np.ndarray, expected_result: np.ndarray) -> None:
def test_xcycwh_to_xyxy(xcycwh: np.ndarray, expected_result: np.ndarray) -> None:
result = xcycwh_to_xyxy(xcycwh)
np.testing.assert_array_equal(result, expected_result)


@pytest.mark.parametrize(
"boxes,resolution_wh,expected",
[
# 0) Empty input
(
np.array([], dtype=float).reshape(0, 4),
(5, 4),
np.array([], dtype=bool).reshape(0, 4, 5),
),
# 1) Single pixel box
(
np.array([[2, 1, 2, 1]], dtype=float),
(5, 4),
np.array(
[
[
[False, False, False, False, False],
[False, False, True, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
]
],
dtype=bool,
),
),
# 2) Horizontal line, inclusive bounds
(
np.array([[1, 2, 3, 2]], dtype=float),
(5, 4),
np.array(
[
[
[False, False, False, False, False],
[False, False, False, False, False],
[False, True, True, True, False],
[False, False, False, False, False],
]
],
dtype=bool,
),
),
# 3) Vertical line, inclusive bounds
(
np.array([[3, 0, 3, 2]], dtype=float),
(5, 4),
np.array(
[
[
[False, False, False, True, False],
[False, False, False, True, False],
[False, False, False, True, False],
[False, False, False, False, False],
]
],
dtype=bool,
),
),
# 4) Proper rectangle fill
(
np.array([[1, 1, 3, 2]], dtype=float),
(5, 4),
np.array(
[
[
[False, False, False, False, False],
[False, True, True, True, False],
[False, True, True, True, False],
[False, False, False, False, False],
]
],
dtype=bool,
),
),
# 5) Negative coordinates clipped to [0, 0]
(
np.array([[-2, -1, 1, 1]], dtype=float),
(5, 4),
np.array(
[
[
[True, True, False, False, False],
[True, True, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
]
],
dtype=bool,
),
),
# 6) Overflow coordinates clipped to width-1 and height-1
(
np.array([[3, 2, 10, 10]], dtype=float),
(5, 4),
np.array(
[
[
[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, True, True],
[False, False, False, True, True],
]
],
dtype=bool,
),
),
# 7) Invalid box where max < min after ints, mask stays empty
(
np.array([[3, 2, 1, 4]], dtype=float),
(5, 4),
np.array(
[
[
[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
]
],
dtype=bool,
),
),
# 8) Fractional coordinates are floored by int conversion
# (0.2,0.2)-(2.8,1.9) -> (0,0)-(2,1)
(
np.array([[0.2, 0.2, 2.8, 1.9]], dtype=float),
(5, 4),
np.array(
[
[
[True, True, True, False, False],
[True, True, True, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
]
],
dtype=bool,
),
),
# 9) Multiple boxes, separate masks
(
np.array([[0, 0, 1, 0], [2, 1, 4, 3]], dtype=float),
(5, 4),
np.array(
[
# Box 0: row 0, cols 0..1
[
[True, True, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
],
# Box 1: rows 1..3, cols 2..4
[
[False, False, False, False, False],
[False, False, True, True, True],
[False, False, True, True, True],
[False, False, True, True, True],
],
],
dtype=bool,
),
),
],
)
def test_xyxy_to_mask(boxes: np.ndarray, resolution_wh, expected: np.ndarray) -> None:
result = xyxy_to_mask(boxes, resolution_wh)
assert result.dtype == np.bool_
assert result.shape == expected.shape
np.testing.assert_array_equal(result, expected)